Highly scalable and standardized organ-on-chip platform with TEER for biological barrier modeling

被引:5
|
作者
Nguyen, Hoang-Tuan [1 ,2 ,3 ,8 ]
Rissanen, Siiri-Liisa [1 ]
Peltokangas, Mimosa [1 ]
Laakkonen, Tino [1 ]
Kettunen, Jere [1 ]
Barthod, Lara [1 ]
Sivakumar, Ragul [1 ]
Palojarvi, Anniina [1 ]
Junttila, Pauliina [1 ]
Talvitie, Jussi [1 ]
Bassis, Michele [4 ]
Nickels, Sarah L. [4 ]
Kalvala, Sara [5 ]
Ilina, Polina [6 ]
Tammela, Paivi [6 ]
Lehtonen, Sarka [5 ,7 ]
Schwamborn, Jens C. [4 ]
Mosser, Sebastien [1 ]
Singh, Prateek [1 ]
机构
[1] Finnadvance Ltd, Oulu, Finland
[2] Univ Oulu, Fac Biochem & Mol Med, Oulu, Finland
[3] Univ Oulu, Bioctr Oulu, Oulu, Finland
[4] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Dev & Cellular Biol, Esch Sur Alzette, Luxembourg
[5] Univ Eastern Finland, AI Virtanen Inst Mol Sci, Kuopio, Finland
[6] Univ Helsinki, Fac Pharm, Drug Res Program, Helsinki, Finland
[7] Univ Helsinki, Neurosci Ctr, Helsinki, Finland
[8] Finnadvance Ltd, Aapistie 5, Oulu 90220, Finland
来源
TISSUE BARRIERS | 2024年 / 12卷 / 04期
关键词
Blood-brain barrier; drug discovery; high throughput screening; lung; microfluidics; organ-on-chip; shear stress; skin; TEER; vascular barriers; SHEAR-STRESS; A-CHIP; CELLS; PERMEABILITY; DIFFERENTIATION; SKIN;
D O I
10.1080/21688370.2024.2315702
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.
引用
收藏
页数:20
相关论文
共 24 条
  • [1] Highly scalable and automation compatible organ-on-chip platform for biological barriers modeling
    Singh, Prateek
    Hoang Tuan Nguyen
    Peltokangas, Mimosa
    Juntilla, Pauliina
    Rissanen, Siiri
    TISSUE ENGINEERING PART A, 2022, 28 : 511 - 511
  • [2] Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems
    Ugodnikov, Alisa
    Persson, Henrik
    Simmons, Craig A.
    LAB ON A CHIP, 2024, 24 (13) : 3199 - 3225
  • [3] Cytostretch, an Organ-on-Chip Platform
    Gaio, Nikolas
    van Meer, Berend
    Solano, William Quiros
    Bergers, Lambert
    van de Stolpe, Anja
    Mummery, Christine
    Sarro, Pasqualina M.
    Dekker, Ronald
    MICROMACHINES, 2016, 7 (07):
  • [4] Modeling the Effects of Protracted Cosmic Radiation in a Human Organ-on-Chip Platform
    Tavakol, Daniel Naveed
    Nash, Trevor R.
    Kim, Youngbin
    Graney, Pamela L.
    Liberman, Martin
    Fleischer, Sharon
    Lock, Roberta I.
    O'Donnell, Aaron
    Andrews, Leah
    Ning, Derek
    Yeager, Keith
    Harken, Andrew
    Deoli, Naresh
    Amundson, Sally A.
    Garty, Guy
    Leong, Kam W.
    Brenner, David J.
    Vunjak-Novakovic, Gordana
    ADVANCED SCIENCE, 2024, 11 (42)
  • [5] Multiplexed blood-brain barrier organ-on-chip
    Zakharova, M.
    do Carmo, M. A. Palma
    van der Helm, M. W.
    Le-The, H.
    de Graaf, M. N. S.
    Orlova, V
    van den Berg, A.
    van der Meer, A. D.
    Broersen, K.
    Segerink, L., I
    LAB ON A CHIP, 2020, 20 (17) : 3132 - 3143
  • [6] Microfluidic organ-on-chip technology for blood-brain barrier research
    van der Helm, Marinke W.
    van der Meer, Andries D.
    Eijkel, Jan C. T.
    van den Berg, Albert
    Segerink, Loes I.
    TISSUE BARRIERS, 2016, 4 (01):
  • [7] Fluoropolymer Functionalization of Organ-on-Chip Platform Increases Detection Sensitivity for Cannabinoids
    Tong, Ziqiu
    Esser, Lars
    Galettis, Peter
    Thissen, Helmut
    Rudd, David
    Easton, Christopher D.
    Nilghaz, Azadeh
    Peng, Bo
    Zhu, Douer
    Martin, Jennifer H.
    Voelcker, Nicolas H.
    BIOSENSORS-BASEL, 2023, 13 (08):
  • [8] Engineering human islet organoids from iPSCs using an organ-on-chip platform
    Tao, Tingting
    Wang, Yaqing
    Chen, Wenwen
    Li, Zhongyu
    Su, Wentao
    Guo, Yaqiong
    Deng, Pengwei
    Qin, Jianhua
    LAB ON A CHIP, 2019, 19 (06) : 948 - 958
  • [9] Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery
    Sunildutt, Naina
    Parihar, Pratibha
    Salih, Abdul Rahim Chethikkattuveli
    Lee, Sang Ho
    Choi, Kyung Hyun
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [10] An Organ-on-Chip Platform for Simulating Drug Metabolism Along the Gut-Liver Axis
    Lucchetti, Mara
    Aina, Kehinde Oluwasegun
    Grandmougin, Lea
    Jaeger, Christian
    Escriva, Pau Perez
    Letellier, Elisabeth
    Mosig, Alexander S.
    Wilmes, Paul
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (20)