Normalized solutions for the fractional Schrodinger equation with combined nonlinearities

被引:0
作者
Deng, Shengbing [1 ]
Wu, Qiaoran [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized solutions; fractional Schrodinger equation; combined nonlinearities; POSITIVE SOLUTIONS; EXISTENCE; NLS;
D O I
10.1515/forum-2023-0424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the normalized solutions for the following fractional Schrodinger equation with combined nonlinearities {(-Delta)(s) u=lambda u + mu vertical bar u vertical bar(q-2)u+ vertical bar u vertical bar(p-2)u in R-N, integral(RN) u(2) dx = a(2), where 0 < s < 1, N > 2s, 2 < q < p = 2(s)* = 2N/N-2, a, mu > 0 and lambda is an element of R is a Lagrange multiplier. Since the existence results for p < 2(s)* have been proved, using an approximation method, that is, let p -> 2(s)*, we obtain several existence results. Moreover, we analyze the asymptotic behavior of solutions as mu -> 0 and mu goes to its upper bound.
引用
收藏
页码:1667 / 1686
页数:20
相关论文
共 29 条
[1]  
Almgren F. J., 1989, J AM MATH SOC, V2, P683, DOI 10.1090/S0894-0347-1989-1002633-4
[2]   Normalized solutions for the fractional NLS with mass supercritical nonlinearity [J].
Appolloni, Luigi ;
Secchi, Simone .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 :248-283
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Normalized solution to the Schrodinger equation with potential and general nonlinear term: Mass super-critical case [J].
Ding, Yanheng ;
Zhong, Xuexiu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 :194-215
[8]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[9]   Existence and instability of normalized standing waves for the fractional Schrodinger equations in the L2-supercritical case [J].
Feng, Binhua ;
Ren, Jiajia ;
Wang, Qingxuan .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
[10]   Uniqueness of Radial Solutions for the Fractional Laplacian [J].
Frank, Rupert L. ;
Lenzmann, Enno ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1671-1726