Tissue biomarkers of immune checkpoint inhibitor therapy

被引:7
作者
Davoudi, Fatemeh [1 ]
Moradi, Afshin [2 ]
Sadeghirad, Habib [2 ]
Kulasinghe, Arutha [2 ]
机构
[1] Ahvaz Jundishapur Univ Med Sci, Sch Med, Dept Med Genet, Ahvaz, Iran
[2] Univ Queensland, Frazer Inst, Fac Med, Brisbane, Qld 4102, Australia
关键词
Immune checkpoint inhibitor; single-cell RNA sequencing; spatial profiling; CELL LUNG-CANCER; T-CELLS; TUMOR MICROENVIRONMENT; ADJUVANT NIVOLUMAB; STAGE-III; RNA-SEQ; IPILIMUMAB; EXPRESSION; LAG-3; MELANOMA;
D O I
10.1111/imcb.12723
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cancer immunotherapy has been rejuvenated by the growing understanding of the immune system's role in tumor activity over the past two decades. During cancer initiation and progression, tumor cells employ various mechanisms that resemble peripheral immune tolerance to evade the antitumor responses of the immune system. Immune checkpoint molecules are the major mechanism of immune resistance that are exploited by tumor cells to inhibit T-cell activation and suppress immune responses. The targeting of immune checkpoint pathways has led to substantial improvements in survival rates in a number of solid cancers. However, a lack of understanding of the heterogeneity of the tumor microenvironment (TME) has resulted in inefficient therapy responses. A greater understanding of the TME is needed to identify patients likely to respond, and those that will have resistance to immune checkpoint inhibitors (ICIs). Advancement in spatial single-cell technologies has allowed deeper insight into the phenotypic and functional diversities of cells in the TME. In this review, we provide an overview of ICI biomarkers and highlight how high-dimensional spatially resolved, single-cell approaches provide deep molecular insights into the TME and allow for the discovery of biomarkers of clinical benefit. In this article, we discuss the current generations of immune checkpoint blockade therapies and how the deeper characterization of the tumor microenvironment is critical for understanding the underlying biology dictating patient responses.image
引用
收藏
页码:179 / 193
页数:15
相关论文
共 142 条
[1]   Tim-3 finds its place in the cancer immunotherapy landscape [J].
Acharya, Nandini ;
Sabatos-Peyton, Catherine ;
Anderson, Ana Carrizosa .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
[2]   LAG-3 transcriptomic expression patterns across malignancies: Implications for precision immunotherapeutics [J].
Adashek, Jacob J. ;
Kato, Shumei ;
Nishizaki, Daisuke ;
Miyashita, Hirotaka ;
De, Pradip ;
Lee, Suzanna ;
Pabla, Sarabjot ;
Nesline, Mary ;
Conroy, Jeffrey M. ;
DePietro, Paul ;
Lippman, Scott ;
Kurzrock, Razelle .
CANCER MEDICINE, 2023, 12 (12) :13155-13166
[3]   Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial [J].
Aggarwal, Charu ;
Prawira, Amy ;
Antonia, Scott ;
Rahma, Osama ;
Tolcher, Anthony ;
Cohen, Roger B. ;
Lou, Yanyan ;
Hauke, Ralph ;
Vogelzang, Nicholas ;
Zandberg, Dan P. ;
Kalebasty, Arash Rezazadeh ;
Atkinson, Victoria ;
Adjei, Alex A. ;
Seetharam, Mahesh ;
Birnbaum, Ariel ;
Weickhardt, Andrew ;
Ganju, Vinod ;
Joshua, Anthony M. ;
Cavallo, Rosetta ;
Peng, Linda ;
Zhang, Xiaoyu ;
Kaul, Sanjeev ;
Baughman, Jan ;
Bonvini, Ezio ;
Moore, Paul A. ;
Goldberg, Stacie M. ;
Arnaldez, Fernanda, I ;
Ferris, Robert L. ;
Lakhani, Nehal J. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 (04)
[4]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[5]  
Anderson NM, 2020, CURR BIOL, V30, pR921, DOI 10.1016/j.cub.2020.06.081
[6]   Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses [J].
Banta, Karl L. ;
Xu, Xiaozheng ;
Chitre, Avantika S. ;
Au-Yeung, Amelia ;
Takahashi, Chikara ;
O'Gorman, William E. ;
Wu, Thomas D. ;
Mittman, Stephanie ;
Cubas, Rafael ;
Comps-Agrar, Laetitia ;
Fulzele, Amit ;
Bennett, Eric J. ;
Grogan, Jane L. ;
Hui, Enfu ;
Chiang, Eugene Y. ;
Mellman, Ira .
IMMUNITY, 2022, 55 (03) :512-+
[7]  
BARLOGIE B, 1983, CANCER RES, V43, P3982
[8]   Immune Escape Mechanisms as a Guide for Cancer Immunotherapy [J].
Beatty, Gregory L. ;
Gladney, Whitney L. .
CLINICAL CANCER RESEARCH, 2015, 21 (04) :687-692
[9]   Current Panorama and Challenges for Neoadjuvant Cancer Immunotherapy [J].
Benitez, Jose Carlos ;
Remon, Jordi ;
Besse, Benjamin .
CLINICAL CANCER RESEARCH, 2020, 26 (19) :5068-5077
[10]   What are the advantages of neoadjuvant immunotherapy over adjuvant immunotherapy? [J].
Bilusic, Marijo .
EXPERT REVIEW OF ANTICANCER THERAPY, 2022, 22 (06) :561-563