Ultrafast Brain MRI Protocol at 1.5 T Using Deep Learning and Multi-shot EPI

被引:11
作者
Altmann, Sebastian [1 ]
Mercado, Mario Alberto Abello [1 ]
Brockstedt, Lavinia [1 ]
Kronfeld, Andrea [1 ]
Clifford, Bryan [2 ]
Feiweier, Thorsten [3 ]
Uphaus, Timo [4 ]
Groppa, Sergiu [4 ]
Brockmann, Marc A. [1 ]
Othman, Ahmed E. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr Mainz, Dept Neuroradiol, Langenbeckst 1, D-55131 Mainz, Germany
[2] Siemens Med Solut USA, Boston, MA USA
[3] Siemens Healthcare GmbH, Erlangen, Germany
[4] Johannes Gutenberg Univ Mainz, Univ Med Ctr Mainz, Dept Neurol, Mainz, Germany
关键词
Deep learning; Image acceleration; Ultrafast brain MRI; Multi-shot EPI; COMPUTED-TOMOGRAPHY; CHILDREN; IMAGES; SENSE;
D O I
10.1016/j.acra.2023.04.019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To evaluate clinical feasibility and image quality of a comprehensive ultrafast brain MRI protocol with multi-shot echo planar imaging and deep learning-enhanced reconstruction at 1.5 T. Materials and Methods: Thirty consecutive patients who underwent clinically indicated MRI at a 1.5 T scanner were prospectively included. A conventional MRI (c-MRI) protocol, including T1-, T2-, T2*-, T2-FLAIR, and diffusion-weighted images (DWI)-weighted sequences were acquired. In addition, ultrafast brain imaging with deep learning-enhanced reconstruction and multi-shot EPI (DLe-MRI) was performed. Subjective image quality was evaluated by three readers using a 4-point Likert scale. To assess interrater agreement, Fleiss' kappa (K) was determined. For objective image analysis, relative signal intensity levels for grey matter, white matter, and cere-brospinal fluid were calculated. Results: Time of acquisition (TA) of c-MRI protocols added up to 13:55 minutes, whereas the TA of DLe-MRI-based protocol added up to 3:04 minutes, resulting in a time reduction of 78%. All DLe-MRI acquisitions yielded diagnostic image quality with good absolute values for subjective image quality. C-MRI demonstrated slight advantages for DWI in overall subjective image quality (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.87 [+/- 0.37], P = .04) and diagnostic confidence (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.83 [+/- 3.83], P = .01). For most evaluated quality scores, moderate interobserver agreement was found. Objective image evaluation revealed comparable results for both techniques. Conclusion: DLe-MRI is feasible and allows for highly accelerated comprehensive brain MRI within 3 minutes at 1.5 T with good image quality. This technique may potentially strengthen the role of MRI in neurological emergencies.
引用
收藏
页码:2988 / 2998
页数:11
相关论文
共 48 条
[1]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[2]   Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial [J].
Bash, S. ;
Wang, L. ;
Airriess, C. ;
Zaharchuk, G. ;
Gong, E. ;
Shankaranarayanan, A. ;
Tanenbaum, L. N. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (12) :2130-2137
[3]   Magnetic resonance imaging (MRI) versus computed tomographic scan (CT scan) of brain in evaluation of suspected cavernous sinus syndrome [J].
Bhatkar, Sanath ;
Mahesh, Karthik Vinay ;
Sachdeva, Julie ;
Goel, Abeer ;
Goyal, Manoj K. ;
Takkar, Aastha ;
Ray, Sucharita ;
Shree, Ritu ;
Balaini, Neeraj ;
Singh, Paramjit ;
Singh, Ramandeep ;
Patnaik, Shiv Narayan ;
Prabhat, Nandita ;
Lal, Vivek .
NEURORADIOLOGY JOURNAL, 2020, 33 (06) :501-507
[4]   Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction [J].
Bilgic, Berkin ;
Chatnuntawech, Itthi ;
Manhard, Mary Kate ;
Tian, Qiyuan ;
Liao, Congyu ;
Iyer, Siddharth S. ;
Cauley, Stephen F. ;
Huang, Susie Y. ;
Polimeni, Jonathan R. ;
Wald, Lawrence L. ;
Setsompop, Kawin .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (04) :1343-1358
[5]   Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) [J].
Breuer, FA ;
Blaimer, M ;
Mueller, MF ;
Seiberlich, N ;
Heidemann, RM ;
Griswold, MA ;
Jakob, PM .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (03) :549-556
[6]  
Bundesamt fur Strahlenschutz, Rontgendiagnostik: Haufigkeit und Strahlenexposition fur die deutsche Bevolkerung
[7]  
Buttram Sandra D W, 2015, Hosp Pediatr, V5, P79, DOI 10.1542/hpeds.2014-0094
[8]   Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison [J].
Chalela, Julio A. ;
Kidwell, Chelsea S. ;
Nentwich, Lauren M. ;
Luby, Marie ;
Butman, John A. ;
Demchuk, Andrew M. ;
Hill, Michael D. ;
Patronas, Nicholas ;
Latour, Lawrence ;
Warach, Steven .
LANCET, 2007, 369 (9558) :293-298
[9]  
Clifford B, 2021, MAGNETOM Flash, V79, P14
[10]   An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging [J].
Clifford, Bryan ;
Conklin, John ;
Huang, Susie Y. ;
Feiweier, Thorsten ;
Hosseini, Zahra ;
Goncalves Filho, Augusto Lio M. ;
Tabari, Azadeh ;
Demir, Serdest ;
Lo, Wei-Ching ;
Longo, Maria Gabriela Figueiro ;
Lev, Michael ;
Schaefer, Pam ;
Rapalino, Otto ;
Setsompop, Kawin ;
Bilgic, Berkin ;
Cauley, Stephen .
MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) :2453-2463