Detecting Spin-Bath Polarization with Quantum Quench Phase Shifts of Single Spins in Diamond

被引:5
作者
Jerger, Paul C. [1 ]
Wang, Yu-Xin [1 ]
Onizhuk, Mykyta [1 ,2 ]
Soloway, Benjamin S. [1 ]
Solomon, Michael T. [1 ,3 ,4 ]
Egerstrom, Christopher [1 ,3 ,4 ]
Heremans, F. Joseph [1 ,3 ,4 ]
Galli, Giulia [1 ,2 ,3 ,4 ]
Clerk, Aashish A. [1 ,3 ,4 ]
Awschalom, David D. [1 ,3 ,4 ,5 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[5] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
关键词
MAGNETIC-RESONANCE-SPECTROSCOPY; NUCLEAR; NOISE;
D O I
10.1103/PRXQuantum.4.040315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-qubit sensing protocols can be used to measure qubit-bath coupling parameters. However, for sufficiently large coupling, the sensing protocol itself perturbs the bath, which is predicted to result in a characteristic response in the sensing measurements. Here, we observe this bath perturbation, also known as a quantum quench, by preparing the nuclear spin bath of a nitrogen-vacancy (NV) center in polarized initial states and performing phase-resolved spin-echo measurements on the NV electron spin. These measurements reveal a time-dependent phase determined by the initial state of the bath. We derive the relationship between the sensor phase and the Gaussian spin-bath polarization and apply it to reconstruct both the axial and transverse polarization components. Using this insight, we optimize the transfer efficiency of our dynamic nuclear polarization sequence. This technique for directly measuring bath polarization may assist in preparing high-fidelity quantum memory states, improving nanoscale NMR methods, and investigating non-Gaussian quantum baths.
引用
收藏
页数:17
相关论文
共 56 条
[1]   Direct measurement of the system-environment coupling as a tool for understanding decoherence and dynamical decoupling [J].
Almog, Ido ;
Sagi, Yoav ;
Gordon, Goren ;
Bensky, Guy ;
Kurizki, Gershon ;
Davidson, Nir .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
[2]   Measuring the Spectrum of Colored Noise by Dynamical Decoupling [J].
Alvarez, Gonzalo A. ;
Suter, Dieter .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[3]   Nonperturbative Master Equation Solution of Central Spin Dephasing Dynamics [J].
Barnes, Edwin ;
Cywinski, Lukasz ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 109 (14)
[4]   Dynamical decoupling sequence construction as a filter-design problem [J].
Biercuk, M. J. ;
Doherty, A. C. ;
Uys, H. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
[5]   Experimental Uhrig dynamical decoupling using trapped ions [J].
Biercuk, Michael J. ;
Uys, Hermann ;
VanDevender, Aaron P. ;
Shiga, Nobuyasu ;
Itano, Wayne M. ;
Bollinger, John J. .
PHYSICAL REVIEW A, 2009, 79 (06)
[6]   Quantum probe hyperpolarisation of molecular nuclear spins [J].
Broadway, David A. ;
Tetienne, Jean-Philippe ;
Stacey, Alastair ;
Wood, James D. A. ;
Simpson, David A. ;
Hall, Liam T. ;
Hollenberg, Lloyd C. L. .
NATURE COMMUNICATIONS, 2018, 9
[7]   Hyperpolarization-Enhanced NMR Spectroscopy with Femtomole Sensitivity Using Quantum Defects in Diamond [J].
Bucher, Dominik B. ;
Glenn, David R. ;
Park, Hongkun ;
Lukin, Mikhail D. ;
Walsworth, Ronald L. .
PHYSICAL REVIEW X, 2020, 10 (02)
[8]   Dynamic 14N nuclear spin polarization in nitrogen-vacancy centers in diamond [J].
Busaite, Laima ;
Lazda, Reinis ;
Berzins, Andris ;
Auzinsh, Marcis ;
Ferber, Ruvin ;
Gahbauer, Florian .
PHYSICAL REVIEW B, 2020, 102 (22)
[9]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[10]   Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy [J].
Chan, K. W. ;
Huang, W. ;
Yang, C. H. ;
Hwang, J. C. C. ;
Hensen, B. ;
Tanttu, T. ;
Hudson, F. E. ;
Itoh, K. M. ;
Laucht, A. ;
Morello, A. ;
Dzurak, A. S. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)