Prediction of diagnostic gene biomarkers for hypertrophic cardiomyopathy by integrated machine learning

被引:5
作者
You, Hongjun [1 ]
Dong, Mengya [1 ,2 ]
机构
[1] Shaanxi Prov Peoples Hosp, Dept Cardiovasc Med, Xian, Shaanxi, Peoples R China
[2] Shaanxi Prov Peoples Hosp, 256 West Youyi Rd, Xian 710068, Shaanxi, Peoples R China
关键词
Biomarker; hypertrophic cardiomyopathy; bioinformatics analysis; machine learning; least absolute shrinkage and selection operator; support vector machine recursive feature elimination; CARDIAC-HYPERTROPHY; EXPRESSION OMNIBUS; EMERGING ROLE; IDENTIFICATION; PROTEIN; HEART; INFLAMMATION; METHYLATION; ACTIVATION; APOPTOSIS;
D O I
10.1177/03000605231213781
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectivesHypertrophic cardiomyopathy (HCM), a leading cause of heart failure and sudden death, requires early diagnosis and treatment. This study investigated the underlying pathogenesis and explored potential diagnostic gene biomarkers for HCM.MethodsTranscriptional profiles of myocardial tissues from patients with HCM (dataset GSE36961) were downloaded from the Gene Expression Omnibus database and subjected to bioinformatics analyses, including differentially expressed gene (DEG) identification, enrichment analyses, and protein-protein interaction (PPI) network analysis. Least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination were performed to identify candidate diagnostic gene biomarkers. mRNA expression levels of candidate biomarkers were tested in an external dataset (GSE141910); area under the receiver operating characteristic curve (AUC) values were obtained to validate diagnostic efficacy.ResultsOverall, 156 DEGs (109 downregulated, 47 upregulated) were identified. Enrichment and PPI network analyses indicated that the DEGs were involved in biological functions and molecular pathways including inflammatory response, platelet activity, complement and coagulation cascades, extracellular matrix organization, phagosome, apoptosis, and VEGFA-VEGFR2 signaling. RASD1, CDC42EP4, MYH6, and FCN3 were identified as diagnostic biomarkers for HCM.ConclusionsRASD1, CDC42EP4, MYH6, and FCN3 might be diagnostic gene biomarkers for HCM and can provide insights concerning HCM pathogenesis.
引用
收藏
页数:17
相关论文
共 80 条
[1]   CDC42EP4, a perisynaptic scaffold protein in Bergmann glia, is required for glutamatergic tripartite synapse configuration [J].
Ageta-Ishihara, Natsumi ;
Konno, Kohtarou ;
Yamazaki, Maya ;
Abe, Manabu ;
Sakimura, Kenji ;
Watanabe, Masahiko ;
Kinoshita, Makoto .
NEUROCHEMISTRY INTERNATIONAL, 2018, 119 :190-198
[2]  
Akhtar Mohammed, 2018, Glob Cardiol Sci Pract, V2018, P36, DOI 10.21542/gcsp.2018.36
[3]   Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype [J].
Alkon, Jaime ;
Friedberg, Mark K. ;
Manlhiot, Cedric ;
Manickaraj, Ashok Kumar ;
Kinnear, Caroline ;
McCrindle, Brian W. ;
Benson, Leland N. ;
Addonizio, Linda J. ;
Colan, Steven D. ;
Mital, Seema .
PEDIATRIC RESEARCH, 2012, 72 (06) :583-592
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[6]   Tissue-level inflammation and ventricular remodeling in hypertrophic cardiomyopathy [J].
Becker, Richard C. ;
Owens, A. Phillip, III ;
Sadayappan, Sakthivel .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2020, 49 (02) :177-183
[7]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338
[8]   Sudden death in mild hypertrophic cardiomyopathy with compound DSG2/DSC2/MYH6 mutations: Revisiting phenotype after genetic assessment in a master runner athlete [J].
Castellana, Stefano ;
Mastroianno, Sandra ;
Palumbo, Pietro ;
Palumbo, Orazio ;
Biagini, Tommaso ;
Leone, Maria Pia ;
De Luca, Giovanni ;
Potenza, Domenico Rosario ;
Amico, Cesare Maria ;
Mazza, Tommaso ;
Russo, Aldo ;
Di Stolfo, Giuseppe ;
Carella, Massimo .
JOURNAL OF ELECTROCARDIOLOGY, 2019, 53 :95-99
[9]  
Clough E, 2016, METHODS MOL BIOL, V1418, P93, DOI 10.1007/978-1-4939-3578-9_5
[10]   GoPubMed: Exploring PubMed with the gene ontology [J].
Doms, A ;
Schroeder, M .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W783-W786