Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans

被引:2
作者
Namatevs, Ivars [1 ]
Nikulins, Arturs [1 ]
Edelmers, Edgars [1 ,2 ]
Neimane, Laura [3 ]
Slaidina, Anda [4 ]
Radzins, Oskars [5 ]
Sudars, Kaspars [1 ]
机构
[1] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
[2] Riga Stradins Univ, Inst Anat & Anthropol, Dept Morphol, LV-1010 Riga, Latvia
[3] Riga Stradins Univ, Inst Stomatol, Dept Conservat Dent & Oral Hlth, LV-1007 Riga, Latvia
[4] Riga Stradins Univ, Inst Stomatol, Dept Prosthet Dent, LV-1007 Riga, Latvia
[5] Riga Stradins Univ, Inst Stomatol, Dept Orthodont, LV-1007 Riga, Latvia
关键词
artificial intelligence; CBCT; convolutional neural network; dentistry; deep learning; osteoporosis; RISK;
D O I
10.3390/tomography9050141
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients' mandibular CBCT images utilizing DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone's thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks, showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable 98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage's bone thickness computation algorithm reported a mean squared error of 0.8377. These findings underline the significant potential of AI in osteoporosis identification and its promise for enhanced medical care. The compartmentalized method endorses a sturdier DCNN training and heightened model transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology given is accompanied by the source code available on GitLab.
引用
收藏
页码:1772 / 1786
页数:15
相关论文
共 50 条
[41]   Essentials of Algebraic Reconstruction in Cone-Beam Computed Tomography [J].
A. E. Chernukha ;
A. I. Shestopalov ;
A. I. Adarova ;
R. V. Shershnev ;
Ya. V. Kizilova ;
S. N. Koryakin ;
S. A. Ivanov ;
A. N. Solovev .
Bulletin of the Lebedev Physics Institute, 2023, 50 :438-444
[42]   A deep learning approach for dental implant planning in cone-beam computed tomography images [J].
Bayrakdar, Sevda Kurt ;
Orhan, Kaan ;
Bayrakdar, Ibrahim Sevki ;
Bilgir, Elif ;
Ezhov, Matvey ;
Gusarev, Maxim ;
Shumilov, Eugene .
BMC MEDICAL IMAGING, 2021, 21 (01)
[43]   Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans [J].
Veldhoen, Simon ;
Schoellchen, Maximilian ;
Hanken, H. ;
Precht, C. ;
Henes, F. O. ;
Schoen, G. ;
Nagel, H. D. ;
Schumacher, U. ;
Heiland, M. ;
Adam, G. ;
Regier, M. .
EUROPEAN RADIOLOGY, 2017, 27 (02) :790-800
[44]   Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry [J].
Issrani, Rakhi ;
Prabhu, Namdeo ;
Sghaireen, Mohammed Ghazi ;
Ganji, Kiran Kumar ;
Alqahtani, Ali Mosfer A. ;
ALJamaan, Tamer Saleh ;
Alanazi, Amal Mohammed ;
Alanazi, Sarah Hatab ;
Alam, Mohammad Khursheed ;
Munisekhar, Manay Srinivas .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (09)
[45]   Automatic Classification System for Periapical Lesions in Cone-Beam Computed Tomography [J].
Andrade Calazans, Maria Alice ;
Ferreira, Felipe Alberto B. S. ;
Melo Guedes Alcoforado, Maria de Lourdes ;
dos Santos, Andrezza ;
Pontual, Andrea dos Anjos ;
Madeiro, Francisco .
SENSORS, 2022, 22 (17)
[46]   A Digital Approach to Evaluating Tooth Root Position Without Repeated Cone-beam Computed Tomography Scans [J].
Lee, Kyungmin Clara .
JOURNAL OF CRANIOFACIAL SURGERY, 2022, 33 (04) :E347-E349
[47]   Automatic Detection of Periapical Osteolytic Lesions on Cone-beam Computed Tomography Using Deep Convolutional Neuronal Networks [J].
Kirnbauer, Barbara ;
Hadzic, Arnela ;
Jakse, Norbert ;
Bischof, Horst ;
Stern, Darko .
JOURNAL OF ENDODONTICS, 2022, 48 (11) :1434-1440
[48]   Comparison of Cone-Beam Computed Tomography and Multislice Computed Tomography in the Assessment of Extremity Fractures [J].
Dubreuil, Thibaut ;
Mouly, Jerome ;
Ltaief-Boudrigua, Aicha ;
Martinon, Amanda ;
Tilhet-Coartet, Stephane ;
Tazarourte, Karim ;
Pialat, Jean-Baptiste .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2019, 43 (03) :372-378
[49]   Root canal morphology and variations in mandibular second molars: an in vivo cone-beam computed tomography analysis [J].
Gomez, Francisco ;
Brea, Gisbeli ;
Gomez-Sosa, Jose Francisco .
BMC ORAL HEALTH, 2021, 21 (01)
[50]   Incidence of the middle mesial canals in mandibular permanent molars in a Romanian population by cone-beam computed tomography [J].
Perlea, Paula ;
Temelcea, Anca Nicoleta ;
Nistor, Cristina Coralia ;
Gheorghiu, Irina Maria ;
Iliescu, Alexandru Andrei .
ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2019, 60 (04) :1285-1290