Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans

被引:2
作者
Namatevs, Ivars [1 ]
Nikulins, Arturs [1 ]
Edelmers, Edgars [1 ,2 ]
Neimane, Laura [3 ]
Slaidina, Anda [4 ]
Radzins, Oskars [5 ]
Sudars, Kaspars [1 ]
机构
[1] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
[2] Riga Stradins Univ, Inst Anat & Anthropol, Dept Morphol, LV-1010 Riga, Latvia
[3] Riga Stradins Univ, Inst Stomatol, Dept Conservat Dent & Oral Hlth, LV-1007 Riga, Latvia
[4] Riga Stradins Univ, Inst Stomatol, Dept Prosthet Dent, LV-1007 Riga, Latvia
[5] Riga Stradins Univ, Inst Stomatol, Dept Orthodont, LV-1007 Riga, Latvia
关键词
artificial intelligence; CBCT; convolutional neural network; dentistry; deep learning; osteoporosis; RISK;
D O I
10.3390/tomography9050141
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients' mandibular CBCT images utilizing DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone's thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks, showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable 98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage's bone thickness computation algorithm reported a mean squared error of 0.8377. These findings underline the significant potential of AI in osteoporosis identification and its promise for enhanced medical care. The compartmentalized method endorses a sturdier DCNN training and heightened model transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology given is accompanied by the source code available on GitLab.
引用
收藏
页码:1772 / 1786
页数:15
相关论文
共 50 条
  • [31] Mandibular Cortical Bone Index Using Multi-Slice and Cone-Beam Computed Tomography
    Naitoh, Munetaka
    Takada, Shoko Tamaki
    Watanabe, Hirofumi
    Hayashi, Hisashi
    Miyamae, Shin
    Ariji, Eiichiro
    [J]. JOURNAL OF HARD TISSUE BIOLOGY, 2016, 25 (03) : 241 - 246
  • [32] Anatomical Evaluation of Mandibular Premolars in Saudi Population: An In Vivo Cone-beam Computed Tomography Study
    Mashyakhy, Mohammed
    Jabali, Ahmad
    AbuMelha, Abdulaziz
    Almasrahi, Mahmoud Yahia
    Alshahrani, Mubarak Ali
    Alamir, Abdulwahab
    Alkahtany, Mazen
    Bhandi, Shilpa
    [J]. OPEN DENTISTRY JOURNAL, 2022, 16
  • [33] DETECTION OF LINGUAL FORAMINA IN THE MANDIBULAR INTERFORAMINAL REGION USING LIMITED CONE BEAM COMPUTED TOMOGRAPHY
    Chirita, Andrei Leonid
    Matei, Teodora
    Predoiu, Mihai
    [J]. ROMANIAN JOURNAL OF ORAL REHABILITATION, 2020, 12 (02): : 267 - 277
  • [34] A novel method for fusion of intra-oral scans and cone-beam computed tomography scans for orthognathic surgery planning
    de Waard, Olivier
    Baan, Frank
    Verhamme, Luc
    Breuning, Hero
    Kuijpers-Jagtman, Anne Marie
    Maal, Thomas
    [J]. JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2016, 44 (02) : 160 - 166
  • [35] Essentials of Algebraic Reconstruction in Cone-Beam Computed Tomography
    Chernukha, A. E.
    Shestopalov, A. I.
    Adarova, A. I.
    Shershnev, R. V.
    Kizilova, Ya. V.
    Koryakin, S. N.
    Ivanov, S. A.
    Solovev, A. N.
    [J]. BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (10) : 438 - 444
  • [36] Cone-beam Computed Tomography Image Pretreatment and Segmentation
    Zheng, Jia
    Zhang, Dinghua
    Huang, Kuidong
    Sun, Yuanxi
    [J]. 2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2018, : 25 - 28
  • [37] Cone-Beam Computed Tomography in Endodontics—State of the Art
    Mazzi-Chaves J.F.
    Camargo R.V.
    Borges A.F.
    Silva R.G.
    Pauwels R.
    Silva-Sousa Y.T.C.
    Sousa-Neto M.D.
    [J]. Current Oral Health Reports, 2021, 8 (2) : 9 - 22
  • [38] Clinical guidelines for dental cone-beam computed tomography
    Takafumi Hayashi
    Yoshinori Arai
    Toru Chikui
    Sachiko Hayashi-Sakai
    Kazuya Honda
    Hiroko Indo
    Taisuke Kawai
    Kaoru Kobayashi
    Shumei Murakami
    Masako Nagasawa
    Munetaka Naitoh
    Eiji Nakayama
    Yutaka Nikkuni
    Hideyoshi Nishiyama
    Noriaki Shoji
    Shigeaki Suenaga
    Ray Tanaka
    [J]. Oral Radiology, 2018, 34 : 89 - 104
  • [39] Intraoperative Endodontic Applications of Cone-Beam Computed Tomography
    Ball, Randy L.
    Barbizam, Joao V.
    Cohenca, Nestor
    [J]. JOURNAL OF ENDODONTICS, 2013, 39 (04) : 548 - 557
  • [40] Cone-Beam Computed Tomography and the Related Scientific Evidence
    Spagnuolo, Gianrico
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (14):