Exponential Entropy Dissipation for Weakly Self-Consistent Vlasov-Fokker-Planck Equations

被引:0
|
作者
Bayraktar, Erhan [1 ]
Feng, Qi [2 ]
Li, Wuchen [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Auxiliary mean-field Fisher information functional; Information gamma calculus; Mean-field information Hessian matrix; EQUILIBRIUM; INEQUALITIES; CONVERGENCE; EXISTENCE; SYSTEM;
D O I
10.1007/s00332-023-09984-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study long-time dynamical behaviors of weakly self-consistent Vlasov-Fokker-Planck equations. We introduce Hessian matrix conditions on mean-field kernel functions, which characterizes the exponential convergence of solutions in L-1 distances. The matrix condition is derived from the dissipation of a selected Lyapunov functional, namely auxiliary Fisher information functional. We verify proposed matrix conditions in examples.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] ANISOTROPIC BOLTZMANN-GIBBS DYNAMICS OF STRONGLY MAGNETIZED VLASOV-FOKKER-PLANCK EQUATIONS
    Herda, Maxime
    Rodrigues, Luis Miguel
    KINETIC AND RELATED MODELS, 2019, 12 (03) : 593 - 636
  • [22] Short-time correlations of many-body systems described by nonlinear Fokker-Planck equations and Vlasov-Fokker-Planck equations
    Frank, TD
    PHYSICS LETTERS A, 2005, 337 (03) : 224 - 234
  • [23] Elaborated Modeling of Synchrotron Motion in Vlasov-Fokker-Planck Solvers
    Schoenfeldt, Patrik
    Boltz, Tobias
    Mochihashi, Akira
    Steinmann, Johannes Leonard
    Mueller, Anke-Susanne
    9TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC18), 2018, 1067
  • [24] Parallelized Vlasov-Fokker-Planck solver for desktop personal computers
    Schoenfeldt, Patrik
    Brosi, Miriam
    Schwarz, Markus
    Steinmann, Johannes L.
    Mueller, Anke-Susanne
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (03):
  • [25] A Vlasov-Fokker-Planck code for high energy density physics
    Tzoufras, M.
    Bell, A. R.
    Norreys, P. A.
    Tsung, F. S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (17) : 6475 - 6494
  • [26] FRACTIONAL DIFFUSION LIMIT FOR A FRACTIONAL VLASOV-FOKKER-PLANCK EQUATION
    Aceves-Sanchez, Pedro
    Cesbron, Ludovic
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 469 - 488
  • [27] Existence and asymptotic analysis of a Vlasov-Fokker-Planck/Magnetohydrodynamic system
    Kim, Jeongho
    ANALYSIS AND APPLICATIONS, 2025,
  • [28] Study of bunch instabilities by the nonlinear Vlasov-Fokker-Planck equation
    Warnock, Robert L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 561 (02): : 186 - 194
  • [29] Accurate particle time integration for solving Vlasov-Fokker-Planck equations with specified electromagnetic fields
    Jenny, Patrick
    Gorji, Hossein
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 430 - 445
  • [30] Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
    Frank, TD
    PHYSICS LETTERS A, 2003, 319 (1-2) : 173 - 180