Explosion and Dynamic Transparency of Low-Density Structured Polymeric Targets Irradiated by a Long-Pulse KrF Laser

被引:0
作者
Zvorykin, Vladimir D. [1 ]
Borisenko, Natalia G. [1 ]
Pervakov, Kirill S. [1 ]
Shutov, Alexey V. [1 ]
Ustinovskii, Nikolay N. [1 ]
机构
[1] PN Lebedev Phys Inst, Leninskii Prospekt 53, Moscow 119991, Russia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
interaction of KrF laser with foams; foam-produced plasma expansion; propagation of laser radiation through foams; INERTIAL CONFINEMENT FUSION; IMPRINT REDUCTION; PLASMA; RADIATION; IGNITION; HYDRODYNAMICS; PERFORMANCE; ABLATION; LAYERS;
D O I
10.3390/sym15091688
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The hydrodynamics of plasma formed in the interaction of 100 ns UV KrF laser pulses with foam targets with volume densities from 5 to 500 mg/cm(3) was studied. Initial and dynamic transmittance at 248 nm wavelength were measured. At intensities of about 10(12) W/cm(2), the propagation rates of radiation through foam targets reached 80 km/s, while plasma stream velocities from both the front and rear sides of targets were approximately the same, similar to 75 km/s, which confirms a volumetric absorption of radiation within the target thickness and the explosive nature of the plasma formation and expansion.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Plasma hydrodynamic experiments on NRL Nike KrF laser [J].
Aglitskiy, Y. ;
Zulick, C. ;
Oh, J. ;
Velikovich, A. L. ;
Schmitt, A. J. ;
Obenschain, S. P. ;
Karasik, M. ;
Weaver, J. L. .
HIGH ENERGY DENSITY PHYSICS, 2020, 37
[2]  
[Anonymous], NATL IGNITION FACILI
[3]  
BASOV NG, 1964, SOV PHYS JETP-USSR, V19, P123
[4]   Foam-induced smoothing studied through laser-driven shock waves [J].
Batani, D ;
Nazarov, W ;
Hall, T ;
Löwer, T ;
Koenig, M ;
Faral, B ;
Benuzzi-Mounaix, A ;
Grandjouan, N .
PHYSICAL REVIEW E, 2000, 62 (06) :8573-8582
[5]   Shock dynamics and shock collision in foam layered targets [J].
Batani, K. ;
Aliverdiev, A. ;
Benocci, R. ;
Dezulian, R. ;
Amirova, A. ;
Krousky, E. ;
Pfeifer, M. ;
Skala, J. ;
Dudzak, R. ;
Nazarov, W. ;
Batani, D. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9
[6]   Laser propagation in a subcritical foam: Ion and electron heating [J].
Belyaev, M. A. ;
Berger, R. L. ;
Jones, O. S. ;
Langer, S. H. ;
Mariscal, D. A. .
PHYSICS OF PLASMAS, 2018, 25 (12)
[7]   Laser requirements for a laser fusion energy power plant [J].
Bodner, Stephen E. ;
Schmitt, Andrew J. ;
Sethian, John D. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2013, 1 (01) :2-10
[8]   Laser-driven hydrothermal wave speed in low-Z foam of overcritical density [J].
Cipriani, M. ;
Gus'kov, S. Yu ;
De Angelis, R. ;
Consoli, F. ;
Rupasov, A. A. ;
Andreoli, P. ;
Cristofari, G. ;
Di Giorgio, G. .
PHYSICS OF PLASMAS, 2018, 25 (09)
[9]   Laser-supported hydrothermal wave in low-dense porous substance [J].
Cipriani, M. ;
Gus'kov, S. Yu ;
De Angelis, R. ;
Consoli, F. ;
Rupasov, A. A. ;
Andreoli, P. ;
Cristofari, G. ;
Di Giorgio, G. ;
Ingenito, F. .
LASER AND PARTICLE BEAMS, 2018, 36 (01) :121-128
[10]   Direct-drive inertial confinement fusion: A review [J].
Craxton, R. S. ;
Anderson, K. S. ;
Boehly, T. R. ;
Goncharov, V. N. ;
Harding, D. R. ;
Knauer, J. P. ;
McCrory, R. L. ;
McKenty, P. W. ;
Meyerhofer, D. D. ;
Myatt, J. F. ;
Schmitt, A. J. ;
Sethian, J. D. ;
Short, R. W. ;
Skupsky, S. ;
Theobald, W. ;
Kruer, W. L. ;
Tanaka, K. ;
Betti, R. ;
Collins, T. J. B. ;
Delettrez, J. A. ;
Hu, S. X. ;
Marozas, J. A. ;
Maximov, A. V. ;
Michel, D. T. ;
Radha, P. B. ;
Regan, S. P. ;
Sangster, T. C. ;
Seka, W. ;
Solodov, A. A. ;
Soures, J. M. ;
Stoeckl, C. ;
Zuegel, J. D. .
PHYSICS OF PLASMAS, 2015, 22 (11)