Asymptotical behavior of non-autonomous stochastic reaction-diffusion equations with variable delay on RN

被引:0
作者
Zhao, Wenqiang [1 ,2 ]
Li, Zhi [1 ,2 ]
机构
[1] Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
关键词
Stochastic reaction-diffusion equation; Variable delay; Pullback random attractor; Truncation estimates; Spectral decomposition; Uniform tail estimates; Arzela-Ascoli theorem; RANDOM ATTRACTORS; PULLBACK ATTRACTORS; PARABOLIC EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1007/s43037-023-00301-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotical behavior of solutions of stochastic reaction- diffusion equations with a super non-linearity and a Lipschizt continuous variable delayed term. The existence and uniqueness of tempered measurable pullback attractors are established in C([-h, 0]; H-1(R-N)). On account of the unobtainable bound of solution in H-2(R-N) caused by the non-differentiability of Brownian motion, the compact embedding on bounded domains is unavailable. To surmount this obstacle, the time point-wise pullback asymptotical compactness of the solutions in H-1(R-N) is proved by employing jointly uniform L-2 (P-2)-truncation estimates, spectral decomposition technique, and uniform tail estimates. In addition, the uniform equi-continuity of solutions in C([-h, 0]; H-1(R-N)) is checked mainly by transforming the infinite dimension problem into a finite dimension problem plus an infinite small principle part.
引用
收藏
页数:50
相关论文
共 42 条
  • [1] [Anonymous], 2015, Jahresbericht der Deutschen Mathematiker-Vereinigung, DOI [10.1365/s13291-015-0115-0, DOI 10.1365/s13291-015-0115-0, DOI 10.1365/S13291-015-0115-0]
  • [2] [Anonymous], 1992, INT SEM APPL MATH NO
  • [3] Arnold L, 1998, RANDOM DYNAMICAL SYS, DOI [10.1007/978-3-662-12878-7, DOI 10.1007/978-3-662-12878-7, 10.1007/978-3-662- 12878-7]
  • [4] Babin JP., 1990, Set-Valued Analysis
  • [5] Attractors for Stochastic lattice dynamical systems
    Bates, PW
    Lisei, H
    Lu, KN
    [J]. STOCHASTICS AND DYNAMICS, 2006, 6 (01) : 1 - 21
  • [6] Caraballo T, 2008, DISCRETE CONT DYN-A, V21, P415
  • [7] Attractors for 2D-Navier-Stokes models with delays
    Caraballo, T
    Real, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) : 271 - 297
  • [8] Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay
    Caraballo, T.
    Marquez-Duran, A. M.
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (03) : 267 - 281
  • [9] The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion
    Caraballo, T.
    Garrido-Atienza, M. J.
    Taniguchi, T.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3671 - 3684
  • [10] ATTRACTORS FOR A RANDOM EVOLUTION EQUATION WITH INFINITE MEMORY: THEORETICAL RESULTS
    Caraballo, Tomas
    Garrido-Atienza, Maria J.
    Schmalfuss, Bjoern
    Valero, Jose
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05): : 1779 - 1800