Deep Learning for Medical Image Cryptography: A Comprehensive Review

被引:17
|
作者
Lata, Kusum [1 ]
Cenkeramaddi, Linga Reddy [2 ]
机构
[1] LNM Inst Informat Technol, Dept Elect & Commun Engn, Jaipur 302031, India
[2] Univ Agder, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
medical image security; cryptography; deep learning; electronic health records (EHR); privacy; security; image authentication; image encryption; image decryption; IoMT; ARTIFICIAL-INTELLIGENCE; AUTOMATIC DETECTION; RADIATION-THERAPY; OBJECT DETECTION; NEURAL-NETWORK; SEGMENTATION; PRIVACY; CLASSIFICATION; DIAGNOSIS; DATASET;
D O I
10.3390/app13148295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronic health records (EHRs) security is a critical challenge in the implementation and administration of Internet of Medical Things (IoMT) systems within the healthcare sector's heterogeneous environment. As digital transformation continues to advance, ensuring privacy, integrity, and availability of EHRs become increasingly complex. Various imaging modalities, including PET, MRI, ultrasonography, CT, and X-ray imaging, play vital roles in medical diagnosis, allowing healthcare professionals to visualize and assess the internal structures, functions, and abnormalities within the human body. These diagnostic images are typically stored, shared, and processed for various purposes, including segmentation, feature selection, and image denoising. Cryptography techniques offer a promising solution for protecting sensitive medical image data during storage and transmission. Deep learning has the potential to revolutionize cryptography techniques for securing medical images. This paper explores the application of deep learning techniques in medical image cryptography, aiming to enhance the privacy and security of healthcare data. It investigates the use of deep learning models for image encryption, image resolution enhancement, detection and classification, encrypted compression, key generation, and end-to-end encryption. Finally, we provide insights into the current research challenges and promising directions for future research in the field of deep learning applications in medical image cryptography.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A review of medical image data augmentation techniques for deep learning applications
    Chlap, Phillip
    Min, Hang
    Vandenberg, Nym
    Dowling, Jason
    Holloway, Lois
    Haworth, Annette
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) : 545 - 563
  • [22] Medical Image Analysis Using Deep Learning: A Systematic Literature Review
    Kumar, E. Sudheer
    Bindu, C. Shoba
    EMERGING TECHNOLOGIES IN COMPUTER ENGINEERING: MICROSERVICES IN BIG DATA ANALYTICS, 2019, 985 : 81 - 97
  • [23] Medical image analysis based on deep learning approach
    Puttagunta, Muralikrishna
    Ravi, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24365 - 24398
  • [24] Deep Learning in Medical Ultrasound Analysis: A Review
    Liu, Shengfeng
    Wang, Yi
    Yang, Xin
    Lei, Baiying
    Liu, Li
    Li, Shawn Xiang
    Ni, Dong
    Wang, Tianfu
    ENGINEERING, 2019, 5 (02) : 261 - 275
  • [25] Deep Learning for Orthopedic Disease Based on Medical Image Analysis: Present and Future
    Lee, JiHwan
    Chung, Seok Won
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [26] Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis
    Hernandez-Cruz, Netzahualcoyotl
    Saha, Pramit
    Sarker, Md Mostafa Kamal
    Noble, J. Alison
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (09)
  • [27] Exploring deep learning for landslide mapping: A comprehensive review
    Yang, Zhi-qiang
    Qi, Wen-wen
    Xu, Chong
    Shao, Xiao-yi
    CHINA GEOLOGY, 2024, 7 (02) : 330 - 350
  • [28] Deep learning on medical image analysis
    Wang, Jiaji
    Wang, Shuihua
    Zhang, Yudong
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2025, 10 (01) : 1 - 35
  • [29] Deep Learning in Medical Image Analysis
    Chan, Heang-Ping
    Samala, Ravi K.
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 3 - 21
  • [30] Multi-task deep learning for medical image computing and analysis: A review
    Zhao, Yan
    Wang, Xiuying
    Che, Tongtong
    Bao, Guoqing
    Li, Shuyu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153