STT-MRAM Technology For Energy-Efficient Cryogenic Memory Applications

被引:1
作者
Garzon, Esteban [1 ]
Yavits, Leonid [2 ]
Teman, Adam [2 ]
Lanuzza, Marco [1 ]
机构
[1] Univ Calabria, DIMES, Arcavacata Di Rende, Italy
[2] Bar Ilan Univ, Fac Engn, EnICS Labs, Ramat Gan, Israel
来源
2023 IEEE 14TH LATIN AMERICA SYMPOSIUM ON CIRCUITS AND SYSTEMS, LASCAS | 2023年
基金
以色列科学基金会;
关键词
Magnetic tunnel junction (MTJ); single-barrier MTJ (SMTJ); double-barrier MTJ (DMTJ); STT-MRAM; embedded memory; energy-efficient; cryogenic; 77K;
D O I
10.1109/LASCAS56464.2023.10108316
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work explores non-volatile (NV) embedded memories implemented by spin-transfer torque magnetic random access memories (STT-MRAMs). Our designs are based on stateof-the-art perpendicular magnetic tunnel junctions (MTJs) along with a commercial 65 nm planar CMOS Bulk technology node, both operating at the liquid nitrogen temperature, 77K. We evaluate the impact of cooling down to 77K of the STT-MRAMs based on single- and double-barrier MTJ (SMTJ and DMTJ), and DMTJ with the relaxed non-volatility. All NV designs were benchmarked against the six-transistor SRAM (6T-SRAM) baseline. Simulation analysis relies on a 512 kB cache memory operating at 77K. Overall, results show that the implementation of STT-MRAMs with DMTJ devices, and in particular when using the non-volatility approach by reducing the cross-section area, excel in terms of energy consumption, leading to energy savings for write/read access of about 35%/54%. This saving is obtained while also dissipating less leakage power and requiring a smaller bitcell footprint. Moreover, it presents reduced write latency overhead (as much as 1.9x lower), at the expense of increased read latency and reduced sensing margins of about 1.8x and 88%, respectively. The results suggest that STT-MRAM technology can be a solid alternative for energy-efficient cryogenic memory applications.
引用
收藏
页码:186 / 189
页数:4
相关论文
共 20 条
[1]  
AMD, 2019, AMD ZEN COR ARCH ZEN
[2]   A PFET-ACCESS RADIATION-HARDENED SRAM FOR EXTREME ENVIRONMENTS [J].
Barlow, Matthew ;
Fu, Guoyuan ;
Hollosi, Brent ;
Lee, Chris ;
Di, Jia ;
Mantooth, H. Alan ;
Schupbach, Marcelo ;
Berger, Richard .
2008 51ST MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2008, :418-+
[3]   A Next-Generation Cryogenic Processor Architecture [J].
Byun, Ilkwon ;
Min, Dongmoon ;
Lee, Gyuhyeon ;
Na, Seongmin ;
Kim, Jangwoo .
IEEE MICRO, 2021, 41 (03) :80-86
[4]   Compact Modeling of Perpendicular STT-MTJs']Js With Double Reference Layers [J].
De Rose, Raffaele ;
d'Aquino, Massimiliano ;
Finocchio, Giovanni ;
Crupi, Felice ;
Carpentieri, Mario ;
Lanuzza, Marco .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 :1063-1070
[5]   A Compact Model with Spin-Polarization Asymmetry for Nanoscaled Perpendicular MTJs']Js [J].
De Rose, Raffaele ;
Lanuzza, Marco ;
d'Aquino, Massimiliano ;
Carangelo, Greta ;
Finocchio, Giovanni ;
Crupi, Felice ;
Carpentieri, Mario .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (10) :4346-4353
[6]   Embedded Memories for Cryogenic Applications [J].
Garzon, Esteban ;
Teman, Adam ;
Lanuzza, Marco .
ELECTRONICS, 2022, 11 (01)
[7]   Relaxing non-volatility for energy-efficient DMTJ based cryogenic STT-MRAM [J].
Garzon, Esteban ;
De Rose, Raffaele ;
Crupi, Felice ;
Trojman, Lionel ;
Teman, Adam ;
Lanuzza, Marco .
SOLID-STATE ELECTRONICS, 2021, 184
[8]   Ultralow Voltage FinFET- Versus TFET-Based STT-MRAM Cells for IoT Applications [J].
Garzon, Esteban ;
Lanuzza, Marco ;
Taco, Ramiro ;
Strangio, Sebastiano .
ELECTRONICS, 2021, 10 (15)
[9]   Gain-Cell Embedded DRAM Under Cryogenic Operation-A First Study [J].
Garzon, Esteban ;
Greenblatt, Yosi ;
Harel, Odem ;
Lanuzza, Marco ;
Teman, Adam .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (07) :1319-1324
[10]   Simulation Analysis of DMTJ-Based STT-MRAM Operating at Cryogenic Temperatures [J].
Garzon, Esteban ;
De Rose, Raffaele ;
Crupi, Felice ;
Carpentieri, Mario ;
Teman, Adam ;
Lanuzza, Marco .
IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)