Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C30-carotenoids

被引:3
|
作者
Filluelo, Oriana [1 ]
Ferrando, Jordi [1 ]
Picart, Pere [1 ]
机构
[1] Univ Barcelona, Fac Pharm & Food Sci Technol, Dept Biol Healthcare & Environm, Microbiol Sect, Avinguda Joan XXIII 27-31, Barcelona 08028, Spain
关键词
B; subtilis; C-30; carotenoids; CRISPR-Cas9; Metabolic engineering; CAROTENOID 4,4-DIAPONEUROSPORENE; FUNCTIONAL-ANALYSIS; ESCHERICHIA-COLI; BIOSYNTHESIS; INTEGRATION; INSERTION; ISOPRENE; STRAINS; MODULES;
D O I
10.1186/s13568-023-01542-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Commercial carotenoid production is dominated by chemical synthesis and plant extraction, both of which are unsustainable and can be detrimental to the environment. A promising alternative for the mass production of carotenoids from both an ecological and commercial perspective is microbial synthesis. To date, C-30 carotenoid production in Bacillus subtilis has been achieved using plasmid systems for the overexpression of biosynthetic enzymes. In the present study, we employed a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system to develop an efficient, safe, and stable C-30 carotenoid-producing B. subtilis strain, devoid of plasmids and antibiotic selection markers. To this end, the expression levels of crtM (dehydrosqualene synthase) and crtN (dehydrosqualene desaturase) genes from Staphylococcus aureus were upregulated by the insertion of three gene copies into the chromosome of B. subtilis. Subsequently, the supply of the C-30 carotenoid precursor farnesyl diphosphate (FPP), which is the substrate for CrtMN enzymes, was enhanced by expressing chromosomally integrated Bacillus megaterium-derived farnesyl diphosphate synthase (FPPS), a key enzyme in the FPP pathway, and abolishing the expression of farnesyl diphosphate phosphatase (YisP), an enzyme responsible for the undesired conversion of FPP to farnesol. The consecutive combination of these features resulted in a stepwise increased production of C-30 carotenoids. For the first time, a B. subtilis strain that can endogenously produce C-30 carotenoids has been constructed, which we anticipate will serve as a chassis for further metabolic engineering and fermentation optimization aimed at developing a commercial scale bioproduction process.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C30-carotenoids
    Oriana Filluelo
    Jordi Ferrando
    Pere Picart
    AMB Express, 13
  • [2] Metabolic engineering of Bacillus subtilis for terpenoid production
    Guan, Zheng
    Xue, Dan
    Abdallah, Ingy I.
    Dijkshoorn, Linda
    Setroikromo, Rita
    Lv, Guiyuan
    Quax, Wim J.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) : 9395 - 9406
  • [3] Metabolic engineering of Bacillus subtilis for terpenoid production
    Zheng Guan
    Dan Xue
    Ingy I. Abdallah
    Linda Dijkshoorn
    Rita Setroikromo
    Guiyuan Lv
    Wim J. Quax
    Applied Microbiology and Biotechnology, 2015, 99 : 9395 - 9406
  • [4] Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine
    Meng, Wu
    Wang, Ruiming
    Xiao, Dongguang
    BIOTECHNOLOGY LETTERS, 2015, 37 (12) : 2475 - 2480
  • [5] Improvement of uridine production in Bacillus subtilis by metabolic engineering
    Wang, Yanhong
    Ma, Ranjing
    Liu, Lu
    He, Lin
    Ban, Rui
    BIOTECHNOLOGY LETTERS, 2018, 40 (01) : 151 - 155
  • [6] Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review
    Liu, Yang
    Zhang, Quan
    Qi, Xiaoxiao
    Gao, Huipeng
    Wang, Meng
    Guan, Hao
    Yu, Bo
    MICROORGANISMS, 2023, 11 (01)
  • [7] Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine
    Wu Meng
    Ruiming Wang
    Dongguang Xiao
    Biotechnology Letters, 2015, 37 : 2475 - 2480
  • [8] Carotenoid production in Bacillus subtilis achieved by metabolic engineering
    Yoshida, Kazuyuki
    Ueda, Shunsaku
    Maeda, Isamu
    BIOTECHNOLOGY LETTERS, 2009, 31 (11) : 1789 - 1793
  • [9] Carotenoid production in Bacillus subtilis achieved by metabolic engineering
    Kazuyuki Yoshida
    Shunsaku Ueda
    Isamu Maeda
    Biotechnology Letters, 2009, 31 : 1789 - 1793
  • [10] Improvement of uridine production in Bacillus subtilis by metabolic engineering
    Yanhong Wang
    Ranjing Ma
    Lu Liu
    Lin He
    Rui Ban
    Biotechnology Letters, 2018, 40 : 151 - 155