Efficient evolution of human antibodies from general protein language models

被引:124
作者
Hie, Brian L. L. [1 ,2 ]
Shanker, Varun R. R. [2 ,3 ]
Xu, Duo [1 ,2 ]
Bruun, Theodora U. J. [1 ,2 ,3 ]
Weidenbacher, Payton A. A. [2 ,4 ]
Tang, Shaogeng [1 ,2 ]
Wu, Wesley [5 ]
Pak, John E. E. [5 ]
Kim, Peter S. S. [1 ,2 ,5 ]
机构
[1] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
[2] Stanford Univ, Sarafan ChEM H, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Stanford Med Scientist Training Program, Stanford, CA USA
[4] Stanford Univ, Dept Chem, Stanford, CA USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
基金
美国国家卫生研究院;
关键词
AFFINITY MATURATION; SEQUENCE; IMMUNOGLOBULIN; SELECTION; BINDING; SET;
D O I
10.1038/s41587-023-01763-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Natural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could guide artificial evolution. Here we report that general protein language models can efficiently evolve human antibodies by suggesting mutations that are evolutionarily plausible, despite providing the model with no information about the target antigen, binding specificity or protein structure. We performed language-model-guided affinity maturation of seven antibodies, screening 20 or fewer variants of each antibody across only two rounds of laboratory evolution, and improved the binding affinities of four clinically relevant, highly mature antibodies up to sevenfold and three unmatured antibodies up to 160-fold, with many designs also demonstrating favorable thermostability and viral neutralization activity against Ebola and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, including antibiotic resistance and enzyme activity, suggesting that these results generalize to many settings. A general protein language model guides protein evolution with 20 or fewer variants needed for testing.
引用
收藏
页码:275 / 283
页数:26
相关论文
共 77 条
  • [1] Alexander E., 2021, Patent No. [WO2021252878A1, 2021252878]
  • [2] Unified rational protein engineering with sequence-based deep representation learning
    Alley, Ethan C.
    Khimulya, Grigory
    Biswas, Surojit
    AlQuraishi, Mohammed
    Church, George M.
    [J]. NATURE METHODS, 2019, 16 (12) : 1315 - +
  • [3] Directed Evolution: Bringing New Chemistry to Life
    Arnold, Frances H.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (16) : 4143 - 4148
  • [4] Bepler T., 2019, INT C LEARNING REPRE, DOI DOI 10.48550/ARXIV.1902.08661
  • [5] Learning the protein language: Evolution, structure, and function
    Bepler, Tristan
    Berger, Bonnie
    [J]. CELL SYSTEMS, 2021, 12 (06) : 654 - +
  • [6] Using deep learning to annotate the protein universe
    Bileschi, Maxwell L.
    Belanger, David
    Bryant, Drew
    Sanderson, Theo
    Carter, Brandon
    Sculley, D.
    Bateman, Alex
    DePristo, Mark A.
    Colwell, Lucy J.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (06) : 932 - +
  • [7] Low-N protein engineering with data-efficient deep learning
    Biswas, Surojit
    Khimulya, Grigory
    Alley, Ethan C.
    Esvelt, Kevin M.
    Church, George M.
    [J]. NATURE METHODS, 2021, 18 (04) : 389 - +
  • [8] Protein stability promotes evolvability
    Bloom, JD
    Labthavikul, ST
    Otey, CR
    Arnold, FH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) : 5869 - 5874
  • [9] Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants
    Brenan, Lisa
    Andreev, Aleksandr
    Cohen, Ofir
    Pantel, Sasha
    Kamburov, Atanas
    Cacchiarelli, Davide
    Persky, Nicole S.
    Zhu, Cong
    Bagul, Mukta
    Goetz, Eva M.
    Burgin, Alex B.
    Garraway, Levi A.
    Getz, Gad
    Mikkelsen, Tarjei S.
    Piccioni, Federica
    Root, David E.
    Johannessen, Cory M.
    [J]. CELL REPORTS, 2016, 17 (04): : 1171 - 1183
  • [10] Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody
    Corti, Davide
    Misasi, John
    Mulangu, Sabue
    Stanley, Daphne A.
    Kanekiyo, Masaru
    Wollen, Suzanne
    Ploquin, Aurelie
    Doria-Rose, Nicole A.
    Staupe, Ryan P.
    Bailey, Michael
    Shi, Wei
    Choe, Misook
    Marcus, Hadar
    Thompson, Emily A.
    Cagigi, Alberto
    Silacci, Chiara
    Fernandez-Rodriguez, Blanca
    Perez, Laurent
    Sallusto, Federica
    Vanzetta, Fabrizia
    Agatic, Gloria
    Cameroni, Elisabetta
    Kisalu, Neville
    Gordon, Ingelise
    Ledgerwood, Julie E.
    Mascola, John R.
    Graham, Barney S.
    Muyembe-Tamfun, Jean-Jacques
    Trefry, John C.
    Lanzavecchia, Antonio
    Sullivan, Nancy J.
    [J]. SCIENCE, 2016, 351 (6279) : 1339 - 1342