Primer on Machine Learning in Electrophysiology

被引:2
作者
Loeffler, Shane E. [1 ]
Trayanova, Natalia [1 ,2 ]
机构
[1] Johns Hopkins Univ, Alliance Cardiovasc Diagnost & Treatment Innovat A, 3400 North Charles St, Hackerman Hall Room 216, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
Machine learning; artificial intelligence; cardiac; electrophysiology; primer; PREDICT; MODELS;
D O I
10.15420/aer.2022.43
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence has become ubiquitous. Machine learning, a branch of artificial intelligence, leads the current technological revolution through its remarkable ability to learn and perform on data sets of varying types. Machine learning applications are expected to change contemporary medicine as they are brought into mainstream clinical practice. In the field of cardiac arrhythmia and electrophysiology, machine learning applications have enjoyed rapid growth and popularity. To facilitate clinical acceptance of these methodologies, it is important to promote general knowledge of machine learning in the wider community and continue to highlight the areas of successful application. The authors present a primer to provide an overview of common supervised (least squares, support vector machine, neural networks and random forest) and unsupervised (k-means and principal component analysis) machine learning models. The authors also provide explanations as to how and why the specific machine learning models have been used in arrhythmia and electrophysiology studies.
引用
收藏
页数:7
相关论文
共 67 条
[1]   PATTERN-RECOGNITION AND MACHINE LEARNING [J].
ABRAMSON, N ;
SEBESTYEN, GS ;
BRAVERMAN, DJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1963, 9 (04) :257-&
[2]   Detecting cardiac pathologies via machine learning on heart-rate variability time series and related markers [J].
Agliari, Elena ;
Barra, Adriano ;
Barra, Orazio Antonio ;
Fachechi, Alberto ;
Vento, Lorenzo Franceschi ;
Moretti, Luciano .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Unsupervised Classification of Atrial Electrograms for Electroanatomic Mapping of Human Persistent Atrial Fibrillation [J].
Almeida, Tiago P. ;
Soriano, Diogo C. ;
Mase, Michela ;
Ravelli, Flavia ;
Bezerra, Arthur S. ;
Li, Xin ;
Chu, Gavin S. ;
Salinet, Joao ;
Stafford, Peter J. ;
Ng, G. Andre ;
Schlindwein, Fernando S. ;
Yoneyama, Takashi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (04) :1131-1141
[4]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[5]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[6]   Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance [J].
Augusto, Joao B. ;
Davies, Rhodri H. ;
Bhuva, Anish N. ;
Knott, Kristopher D. ;
Seraphim, Andreas ;
Alfarih, Mashael ;
Lau, Clement ;
Hughes, Rebecca K. ;
Lopes, Luis R. ;
Shiwani, Hunain ;
Treibel, Thomas A. ;
Gerber, Bernhard L. ;
Hamilton-Craig, Christian ;
Ntusi, Ntobeko A. B. ;
Pontone, Gianluca ;
Desai, Milind Y. ;
Greenwood, John P. ;
Swoboda, Peter P. ;
Captur, Gabriella ;
Cavalcante, Joao ;
Bucciarelli-Ducci, Chiara ;
Petersen, Steffen E. ;
Schelbert, Erik ;
Manisty, Charlotte ;
Moon, James C. .
LANCET DIGITAL HEALTH, 2021, 3 (01) :E20-E28
[7]   Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy [J].
Balaban, Gabriel ;
Halliday, Brian P. ;
Hammersley, Daniel ;
Rinaldi, Christopher A. ;
Prasad, Sanjay K. ;
Bishop, Martin J. ;
Lamata, Pablo .
EUROPACE, 2022, 24 (07) :1137-1147
[8]  
Carpenter G. A., 2010, ENCY MACHINE LEARNIN, P22, DOI [10.1007/978-0-387-30164-811, DOI 10.1007/978-0-387-30164-811]
[9]   Solving Inverse Electrocardiographic Mapping Using Machine Learning and Deep Learning Frameworks [J].
Chen, Ke-Wei ;
Bear, Laura ;
Lin, Che-Wei .
SENSORS, 2022, 22 (06)
[10]   Electrocardiogram lead selection for intelligent screening of patients with systolic heart failure [J].
Chiou, Yu-An ;
Syu, Jhen-Yang ;
Wu, Sz-Ying ;
Lin, Lian-Yu ;
Yi, Li Tzu ;
Lin, Ting-Tse ;
Lin, Shien-Fong .
SCIENTIFIC REPORTS, 2021, 11 (01)