Despite its undeniable success, classical machine learning remains a resource-intensive process. Practical computational efforts for training state-of-the-art models can now only be handled by high speed computer hardware. As this trend is expected to continue, it should come as no surprise that an increasing number of machine learning researchers are investigating the possible advantages of quantum computing. The scientific literature on Quantum Machine Learning is now enormous, and a review of its current state that can be comprehended without a physics background is necessary. The objective of this study is to present a review of Quantum Machine Learning from the perspective of conventional techniques. Departing from giving a research path from fundamental quantum theory through Quantum Machine Learning algorithms from a computer scientist's perspective, we discuss a set of basic algorithms for Quantum Machine Learning, which are the fundamental components for Quantum Machine Learning algorithms. We implement the Quanvolutional Neural Networks (QNNs) on a quantum computer to recognize handwritten digits, and compare its performance to that of its classical counterpart, the Convolutional Neural Networks (CNNs). Additionally, we implement the QSVM on the breast cancer dataset and compare it to the classical SVM. Finally, we implement the Variational Quantum Classifier (VQC) and many classical classifiers on the Iris dataset to compare their accuracies.
机构:
Univ So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
Pudenz, Kristen L.
Lidar, Daniel A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
Univ So Calif, Dept Chem, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
机构:
Univ Teknol Malaysia, Fac Comp, Johor Baharu 81310, MalaysiaUniv Teknol Malaysia, Fac Comp, Johor Baharu 81310, Malaysia
Kehkashan, Tanzila
Alsaeedi, Abdullah
论文数: 0引用数: 0
h-index: 0
机构:
Taibah Univ, Coll Comp Sci & Engn, Dept Comp Sci, Madinah 42353, Saudi ArabiaUniv Teknol Malaysia, Fac Comp, Johor Baharu 81310, Malaysia
Alsaeedi, Abdullah
Yafooz, Wael M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Taibah Univ, Coll Comp Sci & Engn, Dept Comp Sci, Madinah 42353, Saudi ArabiaUniv Teknol Malaysia, Fac Comp, Johor Baharu 81310, Malaysia
Yafooz, Wael M. S.
Ismail, Nor Azman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Comp, Johor Baharu 81310, MalaysiaUniv Teknol Malaysia, Fac Comp, Johor Baharu 81310, Malaysia
Ismail, Nor Azman
Al-Dhaqm, Arafat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol PETRONAS, Comp & Informat Sci Dept, Bandar Seri Iskandar 32610, Perak, MalaysiaUniv Teknol Malaysia, Fac Comp, Johor Baharu 81310, Malaysia
机构:
Symbiosis Center for Information Technology, Symbiosis International University, PuneSymbiosis Center for Information Technology, Symbiosis International University, Pune
Pande M.
Mulay P.
论文数: 0引用数: 0
h-index: 0
机构:
Computer Science Department, Symbiosis Institute of Technology, Symbiosis International University, PuneSymbiosis Center for Information Technology, Symbiosis International University, Pune