Stable Centres of Iwahori-Hecke Algebras of Type A

被引:0
作者
Ryba, Christopher [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Hecke algebras; Centre; Farahat Higman algebra; SYMMETRIC GROUP;
D O I
10.1007/s10468-022-10184-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated result of Farahat and Higman constructs an algebra FH which "interpolates" the centres Z(ZS(n)) of group algebras of the symmetric groups S-n. We extend these results from symmetric group algebras to type A Iwahori-Hecke algebras, H-n(q). In particular, we explain how to construct an algebra FHq "interpolating" the centres Z(H-n(q)). We prove that FHq is isomorphic to R[q, q(-1)] circle times(Z) Lambda (where R is the ring of integer-valued polynomials, and Lambda is the ring of symmetric functions). The isomorphism can be described as "evaluation at Jucys-Murphy elements", leading to a proof of a conjecture of Francis and Wang. This yields character formulae for the Geck-Rouquier basis of Z(H-n(q)) when acting on Specht modules.
引用
收藏
页码:2343 / 2359
页数:17
相关论文
共 15 条
  • [1] Andrew M., 1999, IWAHORI HECKE ALGEBR
  • [2] Christopher R., 2021, ARXIV
  • [3] Content evaluation and class symmetric functions
    Corteel, S
    Goupil, A
    Schaeffer, G
    [J]. ADVANCES IN MATHEMATICS, 2004, 188 (02) : 315 - 336
  • [4] THE CENTRES OF SYMMETRIC GROUP RINGS
    FARAHAT, HK
    HIGMAN, G
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 250 (1261): : 212 - 221
  • [5] Francis A, 2009, CONTEMP MATH, V478, P29
  • [6] Centres of Hecke algebras: The Dipper-James conjecture
    Francis, Andrew R.
    Graham, John J.
    [J]. JOURNAL OF ALGEBRA, 2006, 306 (01) : 244 - 267
  • [7] Geck M, 1997, PROG MATH, V141, P251
  • [8] Ivanov V., 2001, Journal of Mathematical Sciences, V107, P4212
  • [9] Jucys A.-A. A., 1974, Reports on Mathematical Physics, V5, P107, DOI 10.1016/0034-4877(74)90019-6
  • [10] Kannan AS, 2021, ARXIV