Interfacial coupled engineering of plasmonic amorphous MoO3-x nanodots/g-C3N4 nanosheets for photocatalytic water splitting and photothermal conversion

被引:43
作者
Ren, Yumei [1 ,2 ]
Feng, Desheng [1 ]
Yan, Zhiming [1 ]
Sun, Zixu [2 ]
Zhang, Zixuan [1 ]
Xu, Dongwei [1 ]
Qiao, Chong [3 ]
Chen, Zhonghui [2 ]
Jia, Yu [2 ]
Jun, Seong Chan [4 ]
Liu, Shude [4 ,5 ,6 ]
Yamauchi, Yusuke [5 ,6 ,7 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Mat Sci & Engn, Henan Key Lab Aeronaut Mat & Applicat Technol, Zhengzhou 450046, Peoples R China
[2] Henan Univ, Sch Mat Sci & Engn, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
[3] Nanyang Inst Technol, Sch Math & Phys, Nanyang 473004, Peoples R China
[4] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[5] Natl Inst Mat Sci, JST ERATO Yamauchi Mat Space Tecton Project, 1-1 Narniki, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Narniki, Tsukuba, Ibaraki 3050044, Japan
[7] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Surface plasmon effect; AmorphousMoO3_x nanodots; Photocatalytic water splitting; Photothermal conversion; HETEROSTRUCTURES; CONSTRUCTION; COMPOSITE; DYNAMICS; DEFECTS;
D O I
10.1016/j.cej.2022.139875
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semiconductor-based plasmonic materials have attracted extensive attention for photocatalytic systems. How-ever, their photocatalytic reactions are hindered by limited light-harvesting ability and the transfer rate of photo -generated electrons. Herein, vacancy engineering and phase engineering are rationally integrated to develop amorphous molybdenum oxide (a-MoO3_x) nanodots anchored on g-C3N4 as a highly active photocatalyst. Through high localized surface plasmon resonance (LSPR) effect of a-MoO3_x nanodots and tunable electrical properties induced by the heterostructural interface, the Z-scheme a-MoO3_x/g-C3N4 heterostructure demon-strates broadband absorption and the excited photo-generated electrons. Further theoretical calculations demonstrate that the enhancement of photocatalytic and photothermal performance is mainly attributed to the highly localized Anderson tail states of a-MoO3_x. Consequently, the a-MoO3_x/g-C3N4 heterostructure exhibits a photocurrent density of-36.5 mu A cm_2, which is about 2.7 and 4.1 times higher than that of pure g-C3N4 nanosheets (-13.5 mu A cm_2) and a-MoO3_x nanodots (-9 mu A cm_2), respectively. The photocatalytic perfor-mance enhancement relying on defects and long-range disorder of a-MoO3_x in Z-scheme heterostructure is explored.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B [J].
Adhikari, Sangeeta ;
Kim, Do-Heyoung .
APPLIED SURFACE SCIENCE, 2020, 511
[2]   Plasmonic MoO3-x nanosheets by anodic oxidation of molybdenum for colorimetric sensing of hydrogen peroxide [J].
Ahmadzadeh, Z. ;
Ranjbar, M. .
ANALYTICA CHIMICA ACTA, 2022, 1198
[3]   Advances and applications of nanophotonic biosensors [J].
Altug, Hatice ;
Oh, Sang-Hyun ;
Maier, Stefan A. ;
Homola, Jiri .
NATURE NANOTECHNOLOGY, 2022, 17 (01) :5-16
[4]   Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone [J].
Balasubramanian, Paramasivam ;
Annalakshmi, Muthaiah ;
Chen, Shen-Ming ;
Chen, Tse-Wei .
ULTRASONICS SONOCHEMISTRY, 2019, 50 :96-104
[5]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[6]   Design and synthesis of noble metal-based electrocatalysts using metal-organic frameworks and derivatives [J].
Cai, W. ;
Liu, X. ;
Wang, L. ;
Wang, B. .
MATERIALS TODAY NANO, 2022, 17
[7]   Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C3N4 for photocatalytic hydrogen evolution [J].
Cheng, Weiren ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Huang, Yuanyuan ;
Zheng, Xusheng ;
Yao, Tao ;
Liu, Jinkun ;
Hu, Fengchun ;
Jiang, Yong ;
Liu, Qinghua ;
Wei, Shiqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19649-19655
[8]   Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight [J].
Dai, Benlin ;
Zhao, Wei ;
Wei, Wei ;
Cao, Jihui ;
Yang, Gang ;
Li, Shijie ;
Sun, Cheng ;
Leung, Dennis Y. C. .
CARBON, 2022, 193 :272-284
[9]   Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis [J].
Dai, Benlin ;
Chen, Xin ;
Yang, Xiaofan ;
Yang, Gang ;
Li, Shijie ;
Zhang, Lili ;
Mu, Feihu ;
Zhao, Wei ;
Leung, Dennis Y. C. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 287
[10]   Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis [J].
DuChene, Joseph S. ;
Sweeny, Brendan C. ;
Johnston-Peck, Aaron C. ;
Su, Dong ;
Stach, Eric A. ;
Wei, Wei David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7887-7891