Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory Planning and Network Formation in Multi-UAV Networks

被引:25
|
作者
Gong, Shimin [1 ]
Wang, Meng [1 ]
Gu, Bo [1 ]
Zhang, Wenjie [2 ]
Dinh Thai Hoang [3 ]
Niyato, Dusit [4 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Shenzhen 518063, Peoples R China
[2] Minnan Normal Univ, Sch Comp Sci, Fujian 363000, Peoples R China
[3] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
UAV network; trajectory planning; network formation; Bayesian optimization; deep reinforcement learning; ASSISTED DATA-COLLECTION; COOPERATIVE INTERNET; DESIGN; COMMUNICATION; MINIMIZATION;
D O I
10.1109/TVT.2023.3262778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we employ multiple UAVs coordinated by a base station (BS) to help the ground users (GUs) to offload their sensing data. Different UAVs can adapt their trajectories and network formation to expedite data transmissions via multi-hop relaying. The trajectory planning aims to collect allGUs' data, while the UAVs' network formation optimizes the multi-hop UAV network topology to minimize the energy consumption and transmission delay. The joint network formation and trajectory optimization is solved by a two-step iterative approach. Firstly, we devise the adaptive network formation scheme by using a heuristic algorithm to balance the UAVs' energy consumption and data queue size. Then, with the fixed network formation, the UAVs' trajectories are further optimized by using multi-agent deep reinforcement learning without knowing the GUs' traffic demands and spatial distribution. To improve the learning efficiency, we further employ Bayesian optimization to estimate the UAVs' flying decisions based on historical trajectory points. This helps avoid inefficient action explorations and improves the convergence rate in the model training. The simulation results reveal close spatial-temporal couplings between the UAVs' trajectory planning and network formation. Compared with several baselines, our solution can better exploit the UAVs' cooperation in data offloading, thus improving energy efficiency and delay performance.
引用
收藏
页码:10933 / 10948
页数:16
相关论文
共 50 条
  • [31] Deep Reinforcement Learning-enabled Dynamic UAV Deployment and Power Control in Multi-UAV Wireless Networks
    Bai, Yu
    Chang, Zheng
    Jantti, Riku
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 1286 - 1291
  • [32] Multi-UAV Trajectory Optimization Considering Collisions in FSO Communication Networks
    Song, Sooeun
    Choi, Minsu
    Ko, Da-Eun
    Chung, Jong-Moon
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (11) : 3378 - 3394
  • [33] Multi-Agent Deep Reinforcement Learning for Joint Decoupled User Association and Trajectory Design in Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 6056 - 6070
  • [34] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260
  • [35] Multi-UAV Wireless Networks: Jointly Trajectory Optimization and Resource Allocation
    Alsheyab, Huda Y.
    Bedeer, Ebrahim
    Choudhury, Salimur
    Ikki, Salama
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 1053 - 1058
  • [36] PPOSWC: Deep Reinforcement Learning Recharging Scheduling for Effective Service in Multi-UAV Aided Networks
    Osrhir, Youssef
    El Khamlichi, Btissam
    El Fallah-Seghrouchni, Amal
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [37] Flexible multi-UAV formation control via integrating deep reinforcement learning and affine transformations
    Liu, Yunhao
    Liu, Zhihong
    Wang, Guanzheng
    Yan, Chao
    Wang, Xiangke
    Huang, Zhiping
    AEROSPACE SCIENCE AND TECHNOLOGY, 2025, 157
  • [38] Computation offloading over multi-UAV MEC network: A distributed deep reinforcement learning approach
    Wei, Dawei
    Ma, Jianfeng
    Luo, Linbo
    Wang, Yunbo
    He, Lei
    Li, Xinghua
    COMPUTER NETWORKS, 2021, 199 (199)
  • [39] Path Planning for Multi-UAV Formation
    YongBo Chen
    JianQiao Yu
    XiaoLong Su
    GuanChen Luo
    Journal of Intelligent & Robotic Systems, 2015, 77 : 229 - 246
  • [40] Multi-UAV Trajectory and Power Optimization for Cached UAV Wireless Networks With Energy and Content Recharging-Demand Driven Deep Learning Approach
    Chai, Shuqi
    Lau, Vincent K. N.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (10) : 3208 - 3224