autoSMIM: Automatic Superpixel-Based Masked Image Modeling for Skin Lesion Segmentation

被引:5
|
作者
Wang, Zhonghua [1 ,2 ]
Lyu, Junyan [1 ,3 ]
Tang, Xiaoying [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing 314011, Zhejiang, Peoples R China
[3] Univ Queensland, Queensland Brain Inst, St Lucia, Qld 4072, Australia
关键词
Skin; Lesions; Image segmentation; Task analysis; Data models; Semantics; Feature extraction; Skin lesion segmentation; self-supervised learning; masked image modeling; superpixel;
D O I
10.1109/TMI.2023.3290700
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Skin lesion segmentation from dermoscopic images plays a vital role in early diagnoses and prognoses of various skin diseases. However, it is a challenging task due to the large variability of skin lesions and their blurry boundaries. Moreover, most existing skin lesion datasets are designed for disease classification, with relatively fewer segmentation labels having been provided. To address these issues, we propose a novel automatic superpixel-based masked image modeling method, named autoSMIM, in a self-supervised setting for skin lesion segmentation. It explores implicit image features from abundant unlabeled dermoscopic images. autoSMIM begins with restoring an input image with randomly masked superpixels. The policy of generating and masking superpixels is then updated via a novel proxy task through Bayesian Optimization. The optimal policy is subsequently used for training a new masked image modeling model. Finally, we finetune such a model on the downstream skin lesion segmentation task. Extensive experiments are conducted on three skin lesion segmentation datasets, including ISIC 2016, ISIC 2017, and ISIC 2018. Ablation studies demonstrate the effectiveness of superpixel-based masked image modeling and establish the adaptability of autoSMIM. Comparisons with state-of-the-art methods show the superiority of our proposed autoSMIM. The source code is available at https://github.com/Wzhjerry/autoSMIM
引用
收藏
页码:3501 / 3511
页数:11
相关论文
共 50 条
  • [11] Superpixel-based segmentation algorithm for mature citrus
    Yang, Qinghua
    Chen, Yiqin
    Xun, Yi
    Bao, Guanjun
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2020, 13 (04) : 166 - 171
  • [12] Adaptive strategy for superpixel-based region-growing image segmentation
    Chaibou, Mahaman Sani
    Conze, Pierre-Henri
    Kalti, Karim
    Solaiman, Basel
    Mahjoub, Mohamed Ali
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (06)
  • [13] A Superpixel-Based Variational Model for Image Colorization
    Fang, Faming
    Wang, Tingting
    Zeng, Tieyong
    Zhang, Guixu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (10) : 2931 - 2943
  • [14] Seed extraction using superpixel-based SLIC for interactive image segmentation
    Lin, Kaibin
    Li, Qiaoliang
    Wang, Guoqun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [15] Interactive segmentation: a scalable superpixel-based method
    Mathieu, Berengere
    Crouzil, Alain
    Puel, Jean-Baptiste
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (06)
  • [16] SUPERPIXEL-BASED COMPOSITE KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Duan, Wuhui
    Li, Shutao
    Fang, Leyuan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1698 - 1701
  • [17] Superpixel-Based Graph Convolutional Network for UAV Forest Fire Image Segmentation
    Mu, Yunjie
    Ou, Liyuan
    Chen, Wenjing
    Liu, Tao
    Gao, Demin
    DRONES, 2024, 8 (04)
  • [18] Superpixel-Based Intrinsic Image Decomposition of Hyperspectral Images
    Jin, Xudong
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4285 - 4295
  • [19] Robust joint learning of superpixel generation and superpixel-based image segmentation using fuzzy C-multiple-means clustering
    Chengmao Wu
    Jingtian Zhao
    Signal, Image and Video Processing, 2024, 18 : 2345 - 2354
  • [20] Robust superpixel-based fuzzy possibilistic clustering method incorporating local information for image segmentation
    Wu, Chengmao
    Zhao, Jingtian
    VISUAL COMPUTER, 2024, 40 (11) : 7961 - 8000