共 41 条
Fractional anisotropic Calderón problem on complete Riemannian manifolds
被引:1
作者:
Choulli, Mourad
[1
]
Ouhabaz, El Maati
[2
]
机构:
[1] Univ Lorraine, F-54052 Nancy, France
[2] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
关键词:
Fractional Laplace-Beltrami operator;
fractional anisotropic Calderon problem;
local source-to-solution operator;
CALDERON PROBLEM;
EQUATIONS;
STABILITY;
BOUNDS;
D O I:
10.1142/S0219199723500578
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that the metric tensor g of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace-Beltrami operator Delta g. Our result holds under the condition that the metric tensor g is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderon problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
引用
收藏
页数:17
相关论文