We prove that the metric tensor g of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace-Beltrami operator Delta g. Our result holds under the condition that the metric tensor g is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderon problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
He, Yue
Pu, Shiyun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
Bisci, Giovanni Molica
Secchi, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 55, I-20125 Milan, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
机构:
Fudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
Fudan Univ, LMNS, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
Lu, Shuai
Zhai, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China