Hierarchical Monte Carlo Tree Search for Latent Skill Planning

被引:0
作者
Pei, Yue [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15213 USA
来源
2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023 | 2023年
关键词
deep reinforcement learning; monte carlo tree search; REINFORCEMENT; GO;
D O I
10.1145/3590003.3590005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo Tree Search (MCTS) continues to confront the issue of exponential complexity growth in certain tasks when the planning horizon is excessively long, causing the trajectory's past to grow exponentially. Our study presents Hierarchical MCTS Latent Skill Planner, an algorithm based on skill discovery that automatically identifies skills based on intrinsic rewards and integrates them with MCTS, enabling efficient decision-making at a higher level. In the grid world maze domain, we found that latent skill search outperformed the standard MCTS approach that do not contain skills in terms of efficiency and performance.
引用
收藏
页码:6 / 12
页数:7
相关论文
共 50 条
  • [31] Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
    Lim, Nengli
    Li, Yueqin
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 209 - 221
  • [32] Combining Monte-Carlo Tree Search with Proof-Number Search
    Doe, Elliot
    Winands, Mark H. M.
    Soemers, Dennis J. N. J.
    Browne, Cameron
    [J]. 2022 IEEE CONFERENCE ON GAMES, COG, 2022, : 206 - 212
  • [33] Monte Carlo Tree Search: a review of recent modifications and applications
    Swiechowski, Maciej
    Godlewski, Konrad
    Sawicki, Bartosz
    Mandziuk, Jacek
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2497 - 2562
  • [34] A Monte Carlo Tree Search Framework for Quantum Circuit Transformation
    Zhou, Xiangzhen
    Feng, Yuan
    Li, Sanjiang
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [35] Monte Carlo Tree Search as an intelligent search tool in structural design problems
    Rossi, Leonardo
    Winands, Mark H. M.
    Butenweg, Christoph
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (04) : 3219 - 3236
  • [36] Quantum Circuit Transformation: A Monte Carlo Tree Search Framework
    Zhou, Xiangzhen
    Feng, Yuan
    Li, Sanjiang
    [J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2022, 27 (06)
  • [37] Reinforcement learning for active distribution network planning based on Monte Carlo tree search
    Zhang, Xi
    Hua, Weiqi
    Liu, Youbo
    Duan, Jiajun
    Tang, Zhiyuan
    Liu, Junyong
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 138
  • [38] A self-learning Monte Carlo tree search algorithm for robot path planning
    Li, Wei
    Liu, Yi
    Ma, Yan
    Xu, Kang
    Qiu, Jiang
    Gan, Zhongxue
    [J]. FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [39] Monte Carlo Tree Search for Network Planning for Next Generation Mobile Communication Networks
    Shen, Linzhi
    Wang, Shaowei
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [40] Accelerating Cooperative Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree Search
    Kurzer, Karl
    Fechner, Marcus
    Zoellner, J. Marius
    [J]. 2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1726 - 1733