Hierarchical Monte Carlo Tree Search for Latent Skill Planning

被引:0
作者
Pei, Yue [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15213 USA
来源
2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023 | 2023年
关键词
deep reinforcement learning; monte carlo tree search; REINFORCEMENT; GO;
D O I
10.1145/3590003.3590005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo Tree Search (MCTS) continues to confront the issue of exponential complexity growth in certain tasks when the planning horizon is excessively long, causing the trajectory's past to grow exponentially. Our study presents Hierarchical MCTS Latent Skill Planner, an algorithm based on skill discovery that automatically identifies skills based on intrinsic rewards and integrates them with MCTS, enabling efficient decision-making at a higher level. In the grid world maze domain, we found that latent skill search outperformed the standard MCTS approach that do not contain skills in terms of efficiency and performance.
引用
收藏
页码:6 / 12
页数:7
相关论文
共 50 条
  • [21] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [22] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [23] Interpretability of rectangle packing solutions with Monte Carlo tree search
    Lopez, Yeray Galan
    Garcia, Cristian Gonzalez
    Diaz, Vicente Garcia
    Valdez, Edward Rolando Nunez
    Gomez, Alberto Gomez
    JOURNAL OF HEURISTICS, 2024, 30 (3-4) : 173 - 198
  • [24] Fittest survival: an enhancement mechanism for Monte Carlo tree search
    Zhang, Jiajia
    Sun, Xiaozhen
    Zhang, Dandan
    Wang, Xuan
    Qi, Shuhan
    Qian, Tao
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2021, 18 (02) : 122 - 130
  • [25] On Monte Carlo Tree Search and Reinforcement Learning
    Vodopivec, Tom
    Samothrakis, Spyridon
    Ster, Branko
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 60 : 881 - 936
  • [26] Multiple Pass Monte Carlo Tree Search
    McGuinness, Cameron
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1555 - 1561
  • [27] Combining Monte-Carlo Tree Search with Proof-Number Search
    Doe, Elliot
    Winands, Mark H. M.
    Soemers, Dennis J. N. J.
    Browne, Cameron
    2022 IEEE CONFERENCE ON GAMES, COG, 2022, : 206 - 212
  • [28] Monte Carlo Tree Search as an intelligent search tool in structural design problems
    Rossi, Leonardo
    Winands, Mark H. M.
    Butenweg, Christoph
    ENGINEERING WITH COMPUTERS, 2022, 38 (04) : 3219 - 3236
  • [29] Monte Carlo Tree Search: a review of recent modifications and applications
    Swiechowski, Maciej
    Godlewski, Konrad
    Sawicki, Bartosz
    Mandziuk, Jacek
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2497 - 2562
  • [30] Monte Carlo Tree Search for Love Letter
    Omarov, Tamirlan
    Aslam, Hamna
    Brown, Joseph Alexander
    Reading, Elizabeth
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 10 - 15