Uniqueness of conical singularities for mean curvature flows

被引:1
|
作者
Lee, Tang-Kai [1 ]
Zhao, Xinrui [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Asymptotically conical shrinkers; Mean curvature flow; Uniqueness of tangent flows; SUBMANIFOLDS; SHRINKERS; EQUATIONS; STABILITY; SURFACES; BEHAVIOR;
D O I
10.1016/j.jfa.2023.110200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the uniqueness of asymptotically conical tangent flows in all codimensions. This is based on an early work of Chodosh-Schulze, who proved the uniqueness in the hypersurface case.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Uniqueness of grim hyperplanes for mean curvature flows
    Tasayco, Ditter
    Zhou, Detang
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 191 - 200
  • [2] Mean curvature flow from conical singularities
    Chodosh, Otis
    Daniels-Holgate, J. M.
    Schulze, Felix
    INVENTIONES MATHEMATICAE, 2024, 238 (03) : 1041 - 1066
  • [3] Uniqueness of grim hyperplanes for mean curvature flows
    Ditter Tasayco
    Detang Zhou
    Archiv der Mathematik, 2017, 109 : 191 - 200
  • [4] UNIQUENESS OF ASYMPTOTICALLY CONICAL TANGENT FLOWS
    Chodosh, Otis
    Schulze, Felix
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (16) : 3601 - 3657
  • [5] Singularities of symplectic and Lagrangian mean curvature flows
    Xiaoli Han
    Jiayu Li
    Frontiers of Mathematics in China, 2009, 4 : 283 - 296
  • [6] Singularities of symplectic and Lagrangian mean curvature flows
    Han, Xiaoli
    Li, Jiayu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 283 - 296
  • [7] The second type singularities of symplectic and lagrangian mean curvature flows
    Han, Xiaoli
    Li, Jiayu
    Sun, Jun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (02) : 223 - 240
  • [8] Uniqueness of compact tangent flows in Mean Curvature Flow
    Schulze, Felix
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 690 : 163 - 172
  • [9] Subsequent singularities of mean convex mean curvature flows in smooth manifolds
    Ding, Qi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 12
  • [10] Singularities of mean curvature flow
    Xin, Yuanlong
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1349 - 1356