Unified model of lithium-ion battery and electrochemical storage system

被引:14
作者
Barcellona, Simone [1 ]
Colnago, Silvia [1 ]
Codecasa, Lorenzo [1 ]
Piegari, Luigi [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
关键词
Lithium-ion battery; Battery electrical model; Electrochemical storage systems; Characterization procedure; PARAMETER-IDENTIFICATION; IMPEDANCE SPECTROSCOPY; ONLINE ESTIMATION; CHARGE; STATE; TEMPERATURE; RESISTANCE; CELLS;
D O I
10.1016/j.est.2023.109202
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nowadays, energy storage systems are of paramount importance in sectors such as renewable energy production and sustainable mobility because of the energy crisis and climate change issues. Although there are various types of energy storage systems, electrochemical devices such as electric double layer capacitors (EDLCs), lithium-ion capacitors (LiCs), and lithium-ion batteries (LiBs) are the most common because of their high efficiency and flexibility. In particular, LiBs are broadly employed in many applications and preferred in the mobility sector, where there is a need for high energy and high power. To ensure good operating conditions for a battery and limit its degradation, it is important to have a precise model of the device. The literature contains numerous equivalent circuit models capable of predicting the electrical behavior of an LiB in the time or frequency domain. In most of them, the battery impedance is in series with a voltage source modeling the open circuit voltage of the battery for simulation in the time domain. This study demonstrated that an extension of a model composed exclusively of passive elements from the literature for EDLCs and LiCs would also be suitable for LiBs, resulting in a unified model for these types of electrochemical storage systems. This model uses the finite space Warburg impedance, which, in addition to the diffusion process of lithium\lithium ions in the electrodes\electrolyte, makes it possible to consider the main capacitance of the battery. Finally, experimental tests were performed to validate the proposed model.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery
    Munoz, P. M.
    Humana, R. M.
    Falaguerra, T.
    Correa, G. aa
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [42] A Novel Lithium Ion Battery Model: a Step towards the Electrochemical Storage Systems Unification
    Barcellona, S.
    2017 6TH INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP): RENEWABLE ENERGY IMPACT, 2017, : 416 - 421
  • [43] Sizing and Economic Analysis of Lithium-ion Battery Energy Storage System
    Xiu, Xiaoqing
    Li, Jianlin
    Hui, Dong
    ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 627 - 631
  • [44] An Electrochemical-Thermal Coupling Model Based on Two-Factor Parameter Modification for Lithium-Ion Battery
    Chen, Lin
    Zhao, Mingsi
    He, Manping
    Chen, Deqian
    Ding, Yunhui
    Pan, Haihong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2025, 22 (01)
  • [45] Enabling early detection of lithium-ion battery degradation by linking electrochemical properties to equivalent circuit model parameters
    Barzacchi, Leonardo
    Lagnoni, Marco
    Di Rienzo, Roberto
    Bertei, Antonio
    Baronti, Federico
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [46] Health Indicators Identification of Lithium-Ion Battery From Electrochemical Impedance Spectroscopy Using Geometric Analysis
    Zhou, Zhongkai
    Li, Yan
    Wang, Qing-Guo
    Yu, Jinpeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [47] Estimation of lithium-ion battery electrochemical properties from equivalent circuit model parameters using machine learning
    Nicodemo, Niccolo
    Di Rienzo, Roberto
    Lagnoni, Marco
    Bertei, Antonio
    Baronti, Federico
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [48] Life Extrapolation Model for Lithium-ion Battery with Accelerated Degradation Test
    Hou, Yandong
    Wu, Wei
    Song, Yuchen
    Yang, Chen
    Liu, Datong
    Peng, Yu
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [49] Electrochemical modeling of a thermal management system for cylindrical lithium-ion battery pack considering battery capacity fade
    Zadeh, Peyman Gholamali
    Gholamalizadeh, Ehsan
    Wang, Yijun
    Chung, Jae Dong
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 32
  • [50] Equivalent Model and Parameter Identification of Lithium-Ion Battery
    Li, Rui
    Yu, Jialing
    Li, Jingnan
    Chen, Fuguang
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 29 - 39