Unified model of lithium-ion battery and electrochemical storage system

被引:14
|
作者
Barcellona, Simone [1 ]
Colnago, Silvia [1 ]
Codecasa, Lorenzo [1 ]
Piegari, Luigi [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
关键词
Lithium-ion battery; Battery electrical model; Electrochemical storage systems; Characterization procedure; PARAMETER-IDENTIFICATION; IMPEDANCE SPECTROSCOPY; ONLINE ESTIMATION; CHARGE; STATE; TEMPERATURE; RESISTANCE; CELLS;
D O I
10.1016/j.est.2023.109202
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nowadays, energy storage systems are of paramount importance in sectors such as renewable energy production and sustainable mobility because of the energy crisis and climate change issues. Although there are various types of energy storage systems, electrochemical devices such as electric double layer capacitors (EDLCs), lithium-ion capacitors (LiCs), and lithium-ion batteries (LiBs) are the most common because of their high efficiency and flexibility. In particular, LiBs are broadly employed in many applications and preferred in the mobility sector, where there is a need for high energy and high power. To ensure good operating conditions for a battery and limit its degradation, it is important to have a precise model of the device. The literature contains numerous equivalent circuit models capable of predicting the electrical behavior of an LiB in the time or frequency domain. In most of them, the battery impedance is in series with a voltage source modeling the open circuit voltage of the battery for simulation in the time domain. This study demonstrated that an extension of a model composed exclusively of passive elements from the literature for EDLCs and LiCs would also be suitable for LiBs, resulting in a unified model for these types of electrochemical storage systems. This model uses the finite space Warburg impedance, which, in addition to the diffusion process of lithium\lithium ions in the electrodes\electrolyte, makes it possible to consider the main capacitance of the battery. Finally, experimental tests were performed to validate the proposed model.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
    Liu, Chang
    Wang, Yujie
    Chen, Zonghai
    ENERGY, 2019, 166 : 796 - 806
  • [22] Grid connected performance of a household lithium-ion battery energy storage system
    Bila, M.
    Opathella, C.
    Venkatesh, B.
    JOURNAL OF ENERGY STORAGE, 2016, 6 : 178 - 185
  • [23] Dynamic lithium-ion battery model for system simulation
    Gao, LJ
    Liu, SY
    Dougal, RA
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2002, 25 (03): : 495 - 505
  • [24] Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods
    Li, Changlong
    Cui, Naxin
    Wang, Chunyu
    Zhang, Chenghui
    ENERGY, 2021, 221
  • [25] A thermal performance management system for lithium-ion battery packs
    Al-Zareer, Maan
    Dincer, Ibrahim
    Rosen, Marc A.
    APPLIED THERMAL ENGINEERING, 2020, 165
  • [26] A physics-informed neural network approach to parameter estimation of lithium-ion battery electrochemical model
    Wang, Jingrong
    Peng, Qiao
    Meng, Jinhao
    Liu, Tianqi
    Peng, Jichang
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2024, 621
  • [27] Model-based lifetime prediction of an LFP/graphite lithium-ion battery in a stationary photovoltaic battery system
    Weisshar, Bjoern
    Bessler, Wolfgang G.
    JOURNAL OF ENERGY STORAGE, 2017, 14 : 179 - 191
  • [28] Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries
    Koseoglou, Markos
    Tsioumas, Evangelos
    Ferentinou, Dimitra
    Jabbour, Nikolaos
    Papagiannis, Dimitrios
    Mademlis, Christos
    JOURNAL OF POWER SOURCES, 2021, 512
  • [29] Electrochemical model of lithium-ion battery for wide frequency range applications
    Zhang, Qi
    Wang, Dafang
    Yang, Bowen
    Cui, Xing
    Li, Xu
    ELECTROCHIMICA ACTA, 2020, 343
  • [30] Advanced Model of Hybrid Energy Storage System Integrating Lithium-Ion Battery and Supercapacitor for Electric Vehicle Applications
    Mesbahi, Tedjani
    Bartholomeus, Patrick
    Rizoug, Nassim
    Sadoun, Redha
    Khenfri, Fouad
    Le Moigne, Philippe
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (05) : 3962 - 3972