Influence of Long-Term CaO Storage Conditions on the Calcium Looping Thermochemical Reactivity

被引:2
作者
Amghar, Nabil [1 ]
Perejon, Antonio [1 ,3 ]
Ortiz, Carlos [2 ]
Maqueda, Luis A. Perez [1 ]
Sanchez-Jimenez, Pedro E. [1 ,3 ]
机构
[1] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, Seville 41092, Spain
[2] Univ Loyola Andalucia, Dept Engn, Mat & Sustainabil Grp, Seville 41704, Spain
[3] Univ Seville, Fac Quim, Dept Quim Inorgan, Seville 41012, Spain
关键词
CONCENTRATED SOLAR POWER; ENERGY-STORAGE; CO2; CAPTURE; HIGH-TEMPERATURE; MULTICYCLE ACTIVITY; INTEGRATION; CYCLE; CALCINATION; LIMESTONE; SYSTEMS;
D O I
10.1021/acs.energyfuels.3c02652
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Long-term storage capability is often claimed as one of the distinct advantages of the calcium looping process as a potential thermochemical energy storage system for integration into solar power plants. However, the influence of storage conditions on the looping performance has seldom been evaluated experimentally. The storage conditions must be carefully considered as any potential carbonation at the CaO storage tank would reduce the energy released during the subsequent carbonation, thereby penalizing the round-trip efficiency. From lab-scale to conceptual process engineering, this work considers the effects of storing solids at low temperatures (50-200 degrees C) in a CO2 atmosphere or at high temperatures (800 degrees C) in N-2. Experimental results show that carbonation at temperatures below 200 degrees C is limited; thus, the solids could be stored during long times even in CO2. It is also demonstrated at the lab scale that the multicycle performance is not substantially altered by storing the solids at low temperatures (under CO2) or high temperatures (N-2 atmosphere). From an overall process perspective, keeping solids at high temperatures leads to easier heat integration, a better plant efficiency (+2-4%), and a significantly higher energy density (+40-62%) than considering low-temperature storage. The smooth difference in the overall plant efficiency with the temperature suggests a proper long-term energy storage performance if adequate energy integration is carried out.
引用
收藏
页码:16904 / 16914
页数:11
相关论文
共 61 条
[1]   Conversion limits in the reaction of CO2 with lime [J].
Abanades, JC ;
Alvarez, D .
ENERGY & FUELS, 2003, 17 (02) :308-315
[2]   Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage [J].
Alovisio, A. ;
Chacartegui, R. ;
Ortiz, C. ;
Valverde, J. M. ;
Verda, V. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 136 :85-98
[3]   An overview of thermal energy storage systems [J].
Alva, Guruprasad ;
Lin, Yaxue ;
Fang, Guiyin .
ENERGY, 2018, 144 :341-378
[4]   The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature [J].
Amghar, Nabil ;
Ortiz, Carlos ;
Perejon, Antonio ;
Manuel Valverde, Jose ;
Perez-Maqueda, Luis ;
Sanchez-Jimenez, Pedro E. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
[5]  
[Anonymous], 1995, Thermochemical data of pure substances, Vthird
[6]   Effect of Steam Injection during Carbonation on the Multicyclic Performance of Limestone (CaCO3) under Different Calcium Looping Conditions: A Comparative Study [J].
Arcenegui Troya, Juan Jesus ;
Moreno, Virginia ;
Sanchez-Jimenez, Pedro E. ;
Perejon, Antonio ;
Manuel Valverde, Jose ;
Perez-Maqueda, Luis A. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (02) :850-859
[7]   Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot [J].
Arias, B. ;
Diego, M. E. ;
Abanades, J. C. ;
Lorenzo, M. ;
Diaz, L. ;
Martinez, D. ;
Alvarez, J. ;
Sanchez-Biezma, A. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 :237-245
[8]   Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications [J].
Bayon, Alicia ;
Bader, Roman ;
Jafarian, Mehdi ;
Fedunik-Hofman, Larissa ;
Sun, Yanping ;
Hinkley, Jim ;
Miller, Sarah ;
Lipinski, Wojciech .
ENERGY, 2018, 149 :473-484
[9]   The calcium looping cycle for large-scale CO2 capture [J].
Blamey, J. ;
Anthony, E. J. ;
Wang, J. ;
Fennell, P. S. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2010, 36 (02) :260-279
[10]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189