Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising

被引:20
|
作者
Li, Junyi [1 ]
Zhang, Zhilu [1 ]
Liu, Xiaoyu [1 ]
Feng, Chaoyu
Wang, Xiaotao
Lei, Lei
Zuo, Wangmeng [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
CNN;
D O I
10.1109/CVPR52729.2023.00956
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Significant progress has been made in self-supervised image denoising (SSID) in the recent few years. However, most methods focus on dealing with spatially independent noise, and they have little practicality on real-world sRGB images with spatially correlated noise. Although pixel-shuffle downsampling has been suggested for breaking the noise correlation, it breaks the original information of images, which limits the denoising performance. In this paper, we propose a novel perspective to solve this problem, i.e., seeking for spatially adaptive supervision for real-world sRGB image denoising. Specifically, we take into account the respective characteristics of flat and textured regions in noisy images, and construct supervisions for them separately. For flat areas, the supervision can be safely derived from non-adjacent pixels, which are much far from the current pixel for excluding the influence of the noise-correlated ones. And we extend the blind-spot network to a blind-neighborhood network (BNN) for providing supervision on flat areas. For textured regions, the supervision has to be closely related to the content of adjacent pixels. And we present a locally aware network (LAN) to meet the requirement, while LAN itself is selectively supervised with the output of BNN. Combining these two supervisions, a denoising network (e.g., U-Net) can be well-trained. Extensive experiments show that our method performs favorably against state-of-the-art SSID methods on real-world sRGB photographs. The code is available at https://github.com/nagejacob/SpatiallyAdaptiveSSID.
引用
收藏
页码:9914 / 9924
页数:11
相关论文
共 50 条
  • [21] Diffraction denoising using self-supervised learning
    Markovic, Magdalena
    Malehmir, Reza
    Malehmir, Alireza
    GEOPHYSICAL PROSPECTING, 2023, 71 (07) : 1215 - 1225
  • [22] Generative Adaptive Convolutions for Real-World Noisy Image Denoising
    Ma, Ruijun
    Li, Shuyi
    Zhang, Bob
    Li, Zhengming
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1935 - 1943
  • [23] LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising
    Wang, Zichun
    Fu, Ying
    Liu, Ji
    Zhang, Yulun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18156 - 18165
  • [24] Self-Supervised Learning With Adaptive Distillation for Hyperspectral Image Classification
    Yue, Jun
    Fang, Leyuan
    Rahmani, Hossein
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image
    Quan, Yuhui
    Chen, Mingqin
    Pang, Tongyao
    Ji, Hui
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1887 - 1895
  • [26] Self-Supervised Deep Learning for Low-Dose CT Image Denoising
    Bai, T.
    Nguyen, D.
    Jiang, S.
    MEDICAL PHYSICS, 2020, 47 (06) : E658 - E658
  • [27] Self-supervised Learning for Real-World Super-Resolution from Dual Zoomed Observations
    Zhang, Zhilu
    Wang, Ruohao
    Zhang, Hongzhi
    Chen, Yunjin
    Zuo, Wangmeng
    COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 : 610 - 627
  • [28] Noisy-as-Clean: Learning Self-Supervised Denoising From Corrupted Image
    Xu, Jun
    Huang, Yuan
    Cheng, Ming-Ming
    Liu, Li
    Zhu, Fan
    Xu, Zhou
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9316 - 9329
  • [29] Self-Supervised Denoising for Real Satellite Hyperspectral Imagery
    Qin, Jinchun
    Zhao, Hongrui
    Liu, Bing
    REMOTE SENSING, 2022, 14 (13)
  • [30] A self-supervised network for image denoising and watermark removal
    Tian, Chunwei
    Xiao, Jingyu
    Zhang, Bob
    Zuo, Wangmeng
    Zhang, Yudong
    Lin, Chia -Wen
    NEURAL NETWORKS, 2024, 174