Anomaly detection in electroluminescence images of heterojunction solar cells

被引:23
作者
Korovin, Alexey [1 ]
Vasilev, Artem [1 ]
Egorov, Fedor [2 ]
Saykin, Dmitry [2 ]
Terukov, Evgeny [3 ]
Shakhray, Igor [4 ]
Zhukov, Leonid [1 ,5 ]
Budennyy, Semen [1 ,6 ]
机构
[1] Artificial Intelligence Res Inst, Moscow 105064, Russia
[2] Hevel LLC, Novocheboksarsk 429950, Russia
[3] St Petersburg Electrotech Univ LETI, St Petersburg 197022, Russia
[4] Unigreen Energy LLC, Moscow 117342, Russia
[5] HSE Univ, Moscow 101000, Russia
[6] Sber AI Lab, Moscow 117312, Russia
关键词
Solar cells; Image processing; Deep learning; Computer vision; Diagnostics; DEFECT DETECTION; SEGMENTATION; MODULES;
D O I
10.1016/j.solener.2023.04.059
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient defect detection in solar cell manufacturing is crucial for stable green energy technology manufacturing. This paper presents a deep-learning-based automatic detection model SeMaCNN for classification and anomaly detection of electroluminescent images for solar cell quality evaluation. The core of the model is an anomaly detection algorithm based on Mahalanobis distance that can be trained in a semi-supervised manner on imbalanced data with a small number of digital electroluminescence images with relevant defects. This is particularly valuable for prompt model integration into the industrial landscape. The model has been trained with the dataset collected at the manufacturing plant consisting of 68 748 electroluminescent images of heter-ojunction solar cells with a busbar grid. Our model achieves the accuracy of 92.5%, F1 score 95.8%, recall 94.8%, and precision 96.9% within the validation subset consisting of 1049 manually annotated images. The model was also tested on the open ELPV dataset and demonstrates stable performance with accuracy 94.6% and F1 score 91.1%. The SeMaCNN model demonstrates a good balance between its performance and computational complexity, which make it applicable for integrating into quality control systems of solar cell manufacturing.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 47 条
[11]   Evaluating Impact on Electroluminescence Image Quality and Quantitative Analysis using Different Camera Technologies [J].
Colvin, Dylan J. ;
Schneller, Eric J. ;
Horner, Greg S. ;
Gabor, Andrew M. ;
Davis, Kristopher O. .
2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, :1057-1061
[12]  
Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35
[13]   Automatic classification of defective photovoltaic module cells in electroluminescence images [J].
Deitsch, Sergiu ;
Christlein, Vincent ;
Berger, Stephan ;
Buerhop-Lutz, Claudia ;
Maier, Andreas ;
Gallwitz, Florian ;
Riess, Christian .
SOLAR ENERGY, 2019, 185 :455-468
[14]   Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images [J].
Demirci, Mustafa Yusuf ;
Besli, Nurettin ;
Gumuscu, Abduelkadir .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175
[15]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[16]   Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials [J].
Fada, Justin S. ;
Wheeler, Nicholas R. ;
Zabiyaka, Davis ;
Goel, Nikhil ;
Peshek, Timothy J. ;
French, Roger H. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (08)
[17]   Automated Defect Detection and Localization in Photovoltaic Cells Using Semantic Segmentation of Electroluminescence Images [J].
Fioresi, Joseph ;
Colvin, Dylan J. ;
Frota, Rafaela ;
Gupta, Rohit ;
Li, Mengjie ;
Seigneur, Hubert P. ;
Vyas, Shruti ;
Oliveira, Sofia ;
Shah, Mubarak ;
Davis, Kristopher O. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (01) :53-61
[18]   Electroluminescence of silicon solar cells using a consumer grade digital camera [J].
Frazao, M. ;
Silva, J. A. ;
Lobato, K. ;
Serra, J. M. .
MEASUREMENT, 2017, 99 :7-12
[19]   Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence [J].
Fuyuki, T ;
Kondo, H ;
Yamazaki, T ;
Takahashi, Y ;
Uraoka, Y .
APPLIED PHYSICS LETTERS, 2005, 86 (26) :1-3
[20]   Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images [J].
Glatthaar, Markus ;
Giesecke, Johannes ;
Kasemann, Martin ;
Haunschild, Jonas ;
The, Manuel ;
Warta, Wilhem ;
Rein, Stefan .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)