Anomaly detection in electroluminescence images of heterojunction solar cells

被引:23
作者
Korovin, Alexey [1 ]
Vasilev, Artem [1 ]
Egorov, Fedor [2 ]
Saykin, Dmitry [2 ]
Terukov, Evgeny [3 ]
Shakhray, Igor [4 ]
Zhukov, Leonid [1 ,5 ]
Budennyy, Semen [1 ,6 ]
机构
[1] Artificial Intelligence Res Inst, Moscow 105064, Russia
[2] Hevel LLC, Novocheboksarsk 429950, Russia
[3] St Petersburg Electrotech Univ LETI, St Petersburg 197022, Russia
[4] Unigreen Energy LLC, Moscow 117342, Russia
[5] HSE Univ, Moscow 101000, Russia
[6] Sber AI Lab, Moscow 117312, Russia
关键词
Solar cells; Image processing; Deep learning; Computer vision; Diagnostics; DEFECT DETECTION; SEGMENTATION; MODULES;
D O I
10.1016/j.solener.2023.04.059
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient defect detection in solar cell manufacturing is crucial for stable green energy technology manufacturing. This paper presents a deep-learning-based automatic detection model SeMaCNN for classification and anomaly detection of electroluminescent images for solar cell quality evaluation. The core of the model is an anomaly detection algorithm based on Mahalanobis distance that can be trained in a semi-supervised manner on imbalanced data with a small number of digital electroluminescence images with relevant defects. This is particularly valuable for prompt model integration into the industrial landscape. The model has been trained with the dataset collected at the manufacturing plant consisting of 68 748 electroluminescent images of heter-ojunction solar cells with a busbar grid. Our model achieves the accuracy of 92.5%, F1 score 95.8%, recall 94.8%, and precision 96.9% within the validation subset consisting of 1049 manually annotated images. The model was also tested on the open ELPV dataset and demonstrates stable performance with accuracy 94.6% and F1 score 91.1%. The SeMaCNN model demonstrates a good balance between its performance and computational complexity, which make it applicable for integrating into quality control systems of solar cell manufacturing.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 47 条
[1]   Photovoltaic cell defect classification using convolutional neural network and support vector machine [J].
Ahmad, Ashfaq ;
Jin, Yi ;
Zhu, Changan ;
Javed, Iqra ;
Maqsood, Asim ;
Akram, Muhammad Waqar .
IET RENEWABLE POWER GENERATION, 2020, 14 (14) :2693-2702
[2]   CNN based automatic detection of photovoltaic cell defects in electroluminescence images [J].
Akram, M. Waqar ;
Li, Guiqiang ;
Jin, Yi ;
Chen, Xiao ;
Zhu, Changan ;
Zhao, Xudong ;
Khaliq, Abdul ;
Faheem, M. ;
Ahmad, Ashfaq .
ENERGY, 2019, 189
[3]   Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique [J].
Anwar, Said Amirul ;
Abdullah, Mohd Zaid .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2014,
[4]  
Bartler A, 2018, EUR SIGNAL PR CONF, P2035, DOI 10.23919/EUSIPCO.2018.8553025
[5]   Quantitative evaluation of electroluminescence images of solar cells [J].
Breitenstein, O. ;
Khanna, A. ;
Augarten, Y. ;
Bauer, J. ;
Wagner, J. -M. ;
Iwig, K. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2010, 4 (1-2) :7-9
[6]   eco2AI: Carbon Emissions Tracking of Machine Learning Models as the First Step Towards Sustainable AI [J].
Budennyy, S. A. ;
Lazarev, V. D. ;
Zakharenko, N. N. ;
Korovin, A. N. ;
Plosskaya, O. A. ;
Dimitrov, D. V. ;
Akhripkin, V. S. ;
Pavlov, I. V. ;
Oseledets, I. V. ;
Barsola, I. S. ;
Egorov, I. V. ;
Kosterina, A. A. ;
Zhukov, L. E. .
DOKLADY MATHEMATICS, 2022, 106 (SUPPL 1) :S118-S128
[7]  
Buerhop-Lutz C., 2018, 35 EUR PHOT SOL EN C, DOI [10.4229/35thEUPVSEC20182018-5CV.3.15, DOI 10.4229/35THEUPVSEC20182018-5CV.3.15]
[8]   Influence of Resampling on Accuracy of Imbalanced Classification [J].
Burnaev, E. ;
Erofeev, P. ;
Papanov, A. .
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015), 2015, 9875
[9]   Automated defect identification in electroluminescence images of solar modules* [J].
Chen, Xin ;
Karin, Todd ;
Jain, Anubhav .
SOLAR ENERGY, 2022, 242 :20-29
[10]   Cell dark current-voltage from non-calibrated module electroluminescence image analysis [J].
Colvin, Dylan J. ;
Schneller, Eric J. ;
Davis, Kristopher O. .
SOLAR ENERGY, 2022, 244 :448-456