Exploring Behavior Patterns for Next-POI Recommendation via Graph Self-Supervised Learning

被引:8
作者
Wang, Daocheng [1 ]
Chen, Chao [1 ]
Di, Chong [1 ]
Shu, Minglei [1 ]
机构
[1] Shandong Acad Sci, Qilu Univ Technol, Shandong Artificial Intelligence Inst, Jinan 250014, Peoples R China
关键词
graph self-supervised learning; contrastive learning; implicit behavior pattern; self-attention; next POI recommendation;
D O I
10.3390/electronics12081939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Next-point-of-interest (POI) recommendation is a crucial part of location-based social applications. Existing works have attempted to learn behavior representation through a sequence model combined with spatial-temporal-interval context. However, these approaches ignore the impact of implicit behavior patterns contained in the visit trajectory on user decision making. In this paper, we propose a novel graph self-supervised behavior pattern learning model (GSBPL) for the next-POI recommendation. GSBPL applies two graph data augmentation operations to generate augmented trajectory graphs to model implicit behavior patterns. At the same time, a graph preference representation encoder (GPRE) based on geographical and social context is proposed to learn the high-order representations of trajectory graphs, and then capture implicit behavior patterns through contrastive learning. In addition, we propose a self-attention based on multi-feature embedding to learn users' short-term dynamic preferences, and finally combine trajectory graph representation to predict the next location. The experimental results on three real-world datasets demonstrate that GSBPL outperforms the supervised learning baseline in terms of performance under the same conditions.
引用
收藏
页数:19
相关论文
共 47 条
[1]   FG-CF: Friends-aware graph collaborative filtering for POI recommendation [J].
Cai, Zhuo ;
Yuan, Guan ;
Qiao, Shaojie ;
Qu, Song ;
Zhang, Yanmei ;
Bing, Rui .
NEUROCOMPUTING, 2022, 488 :107-119
[2]   Learning Graph-Based Geographical Latent Representation for Point-of-Interest Recommendation [J].
Chang, Buru ;
Jang, Gwanghoon ;
Kim, Seoyoon ;
Kang, Jaewoo .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :135-144
[3]   Coupled Term-Term Relation Analysis for Document Clustering [J].
Cheng, Xin ;
Miao, Duoqian ;
Wang, Can ;
Cao, Longbing .
2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
[4]   ST-PIL: Spatial-Temporal Periodic Interest Learning for Next Point-of-Interest Recommendation [J].
Cui, Qiang ;
Zhang, Chenrui ;
Zhang, Yafeng ;
Wang, Jinpeng ;
Cai, Mingchen .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, :2960-2964
[5]   DeepMove: Predicting Human Mobility with Attentional Recurrent Networks [J].
Feng, Jie ;
Li, Yong ;
Zhang, Chao ;
Sun, Funing ;
Meng, Fanchao ;
Guo, Ang ;
Jin, Depeng .
WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, :1459-1468
[6]  
Grill J.B., 2020, Proc. of NeurIPS, P21271
[7]   Momentum Contrast for Unsupervised Visual Representation Learning [J].
He, Kaiming ;
Fan, Haoqi ;
Wu, Yuxin ;
Xie, Saining ;
Girshick, Ross .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9726-9735
[8]   LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [J].
He, Xiangnan ;
Deng, Kuan ;
Wang, Xiang ;
Li, Yan ;
Zhang, Yongdong ;
Wang, Meng .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :639-648
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Private traits and attributes are predictable from digital records of human behavior [J].
Kosinski, Michal ;
Stillwell, David ;
Graepel, Thore .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (15) :5802-5805