EEG Biomarkers to Predict Response to Sertraline and Placebo Treatment in Major Depressive Disorder

被引:9
作者
Oakley, Thomas [1 ]
Coskuner, Jonathan [2 ]
Cadwallader, Andrew [3 ]
Ravan, Maryam [2 ]
Hasey, Gary [4 ]
机构
[1] New York Inst Technol, Dept Data Sci, New York, NY USA
[2] New York Inst Technol, Dept Elect & Comp Engn, New York, NY 10023 USA
[3] New York Inst Technol, Dept Comp Sci, New York, NY USA
[4] McMaster Univ, Dept Psychiat & Behav Neurosci, Hamilton, ON, Canada
关键词
Electroencephalography; Antidepressants; Depression; Electrodes; Phase measurement; Medical diagnostic imaging; Biomarkers; Directed phase lag index; machine learning; Index Terms; major depressive disorder (MDD); Placebo; predicting response; resting-state electroencephalography (EEG); Sertraline; PHASE-LAG INDEX; STAR-ASTERISK-D; ANTIDEPRESSANT RESPONSE; FUNCTIONAL CONNECTIVITY; MODEL; METAANALYSIS; SELECTION; OUTCOMES; BIAS; CARE;
D O I
10.1109/TBME.2022.3204861
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Major depressive disorder (MDD) is a persistent psychiatric condition, and the leading cause of disability, affecting up to 5% of the population worldwide. Antidepressant medications (ADMs) are often the first-line treatment for MDD, but it may take the clinician months of "trial and error" to find an effective ADM for a particular patient. Therefore, identification of predictive biomarkers that can be used to accurately determine the effectiveness of a specific treatment for an individual patient is extremely valuable. Method: Using resting EEG data, we develop a machine learning algorithm (MLA) that searches for connectivity patterns within an individual's EEG signal that are predictive of the probability of responding to the antidepressant Sertraline or Placebo. The MLA has two steps: 1) Directed phase lag index (DPLI), a measure of phase synchronization between brain regions, that is not sensitive to volume conduction is applied to resting-state EEG data, 2) the resulting DPLI matrix is searched for a pattern set of features that can be used to successfully predict the response to Sertraline or Placebo. Results: Our MLA predicted response to Sertraline (N = 105) or Placebo (N = 119) with more than 80% accuracy. Conclusion: Our findings suggest that feature patterns selected from a DPLI matrix may be predictive of response to Sertraline and to Placebo. Significance: The proposed MLA may provide an inexpensive, non-invasive, and readily available tool that clinicians may use to enhance treatment effectiveness, accelerate time to recovery, reduce personal suffering, and decrease treatment costs.
引用
收藏
页码:909 / 919
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 2018, Depression
[2]  
Berrar D., 2018, Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics
[3]   Cross-national epidemiology of DSM-IV major depressive episode [J].
Bromet, Evelyn ;
Andrade, Laura Helena ;
Hwang, Irving ;
Sampson, Nancy A. ;
Alonso, Jordi ;
de Girolamo, Giovanni ;
de Graaf, Ron ;
Demyttenaere, Koen ;
Hu, Chiyi ;
Iwata, Noboru ;
Karam, Aimee N. ;
Kaur, Jagdish ;
Kostyuchenko, Stanislav ;
Lepine, Jean-Pierre ;
Levinson, Daphna ;
Matschinger, Herbert ;
Medina Mora, Maria Elena ;
Browne, Mark Oakley ;
Posada-Villa, Jose ;
Viana, Maria Carmen ;
Williams, David R. ;
Kessler, Ronald C. .
BMC MEDICINE, 2011, 9
[4]   Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre- and post-treatment findings [J].
Bruder, Gerard E. ;
Sedoruk, James P. ;
Stewart, Jonathan W. ;
McGrath, Patrick J. ;
Quitkin, Frederic M. ;
Tenke, Craig E. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (12) :1171-1177
[5]   Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis [J].
Castellanos, Nazareth P. ;
Makarov, Valeri A. .
JOURNAL OF NEUROSCIENCE METHODS, 2006, 158 (02) :300-312
[6]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[7]   Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis [J].
Cipriani, Andrea ;
Furukawa, Tashi A. ;
Salanti, Georgia ;
Chaimani, Anna ;
Atkinson, Lavren Z. ;
Ogawa, Yusuke ;
Levcht, Stefan ;
Ruhe, Henricus G. ;
Turner, Erick H. ;
Higgins, Julian P. T. ;
Egger, Matthias ;
Takeshima, Nozomi ;
Hayasaka, Yu ;
Imai, Hissei ;
Shinohara, Kiyomi ;
Tajika, Aran ;
Ioannidis, John P. A. ;
Geddes, Jahn R. .
LANCET, 2018, 391 (10128) :1357-1366
[8]   Cerebral Blood Perfusion Predicts Response to Sertraline versus Placebo for Major Depressive Disorder in the EMBARC Trial [J].
Cooper, Crystal M. ;
Fatt, Cherise R. Chin ;
Jha, Manish ;
Fonzo, Gregory A. ;
Grannemann, Bruce D. ;
Carmody, Thomas ;
Ali, Aasia ;
Aslan, Sina ;
Almeida, Jorge R. C. ;
Deckersbach, Thilo ;
Fava, Maurizio ;
Kurian, Benji T. ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Parsey, Ramin, V ;
Weissman, Myrna ;
Phillips, Mary L. ;
Lu, Hanzhang ;
Etkin, Amit ;
Trivedi, Madhukar H. .
ECLINICALMEDICINE, 2019, 10 :32-41
[9]   Multiscale entropy analysis of biological signals [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW E, 2005, 71 (02)
[10]  
Pascual-Marqui RD, 2007, Arxiv, DOI [arXiv:0710.3341, DOI 10.48550/ARXIV.0710.3341]