Surface morphology and deuterium retention in W and W-HfC alloy exposed to high flux D plasma irradiation

被引:3
作者
Wang, Yongkui [1 ]
Huang, Xiaochen [1 ]
Zhou, Jiafeng [1 ]
Fang, Jun [1 ]
Gao, Yan [1 ]
Ge, Jinlong [1 ]
Miao, Shu [2 ]
Xie, Zhuoming [3 ]
机构
[1] Bengbu Univ, Sch Mat & Chem Engn, Bengbu 233030, Peoples R China
[2] Guangdong Acad Sci, China Ukraine Inst Welding, Guangdong Prov Key Lab Adv Welding Technol, Guangzhou 510650, Peoples R China
[3] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
关键词
Tungsten; W-HfC alloy; D retention; Hardening; HELIUM-COOLED DIVERTOR; GAS-DRIVEN PERMEATION; TUNGSTEN;
D O I
10.1016/j.net.2022.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this work, pure W and W-0.5wt%HfC alloy (WHC05) were fabricated by sintering and hot-rolling following the same processing route. After exposing to a high flux deuterium plasma irradiation with the D+ flux to three fluences of 6.00 x 1024, 2.70 x 1025 and 7.02 x 1025 D/m2, the evolution of surface morphology, deuterium retention and hardening behaviors in pure W and WHC05 has been studied. The SEM results show the formation of D blisters on the irradiated area, and with the increase of D im-plantation, the size of these blisters increases from 200 -500 nm (2.70 x 1025 D/m2) to 1 -2 mm (7.02 x 1025 D/m2) in WHC05 and from 1 -2 mm (2.70 x 1025 D/m2) to > 3 mm (7.02 x 1025 D/m2) in pure W, respectively. A higher D retention and obvious hardening are observed in pure W than that of the WHC05 alloy, indicating an improve radiation resistance in WHC05 compared to pure W.(c) 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:575 / 579
页数:5
相关论文
共 30 条
[1]   D2 gas-filled blisters on deuterium-bombarded tungsten [J].
Balden, Martin ;
Lindig, Stefan ;
Manhard, Armin ;
You, Jeong-Ha .
JOURNAL OF NUCLEAR MATERIALS, 2011, 414 (01) :69-72
[2]   Gas-driven permeation of deuterium through tungsten and tungsten alloys [J].
Buchenauer, Dean A. ;
Karnesky, Richard A. ;
Fang, Zhigang Zak ;
Ren, Chai ;
Oya, Yasuhisa ;
Otsuka, Teppei ;
Yamauchi, Yuji ;
Whaley, Josh A. .
FUSION ENGINEERING AND DESIGN, 2016, 109 :104-108
[3]   HYDROGEN BUBBLES IN METALS [J].
CONDON, JB ;
SCHOBER, T .
JOURNAL OF NUCLEAR MATERIALS, 1993, 207 :1-24
[4]   Materials perspective - A survey of plasma facing materials for fusion power plants [J].
Cottrell, G. A. .
MATERIALS SCIENCE AND TECHNOLOGY, 2006, 22 (08) :869-880
[5]   Deuterium ion-driven permeation and bulk retention in tungsten [J].
Gasparyan, Yu. ;
Rasinski, M. ;
Mayer, M. ;
Pisarev, A. ;
Roth, J. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :540-544
[6]   Deuterium retention in rhenium-doped tungsten [J].
Golubeva, A. V. ;
Mayer, M. ;
Roth, J. ;
Kurnaev, V. A. ;
Ogorodnikova, O. V. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (893-897) :893-897
[7]   The effect of ion damage on deuterium trapping in tungsten [J].
Haasz, AA ;
Poon, M ;
Davis, JW .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :520-525
[8]   Analysis of trapping sites for deuterium in W-Cr-Y SMART alloy [J].
Harutyunyan, Z. ;
Gasparyan, Yu. ;
Efimov, V. ;
Litnovsky, A. ;
Klein, F. ;
Pisarev, A. ;
Coenen, J. W. ;
Linsmeier, Ch. .
VACUUM, 2022, 199
[9]   The status of the ITER design [J].
Holtkamp, N. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :98-105
[10]  
Knaster J, 2016, NAT PHYS, V12, P424, DOI [10.1038/NPHYS3735, 10.1038/nphys3735]