Existence and L?-estimates for non-uniformly elliptic equations with non-polynomial growths

被引:2
作者
Benslimane, Omar [1 ]
Aberqi, Ahmed [2 ]
Elmassoudi, Mhamed [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar Mahraz, Dept Math, BP 1796, Atlas Fez, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Natl Sch Appl Sci, Fes, Morocco
关键词
Degenerate coercivity; Weak solution; Existence; Bounded solution; Elliptic Equations; Orlicz spaces; 2-condition; RENORMALIZED SOLUTIONS; NATURAL GROWTH;
D O I
10.2298/FIL2316509B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, we investigate the existence and regularity of weak solutions to a class of non-uniformly elliptic equations with degenerate coercivity and non-polynomial growth. The model case is given as follows: ( exp(1 + |Du|) l + M(|Du|) div(1 + |u|)2 Du(1 + |u|)2 .u = f in omega. An L infinity- estimate of solutions is also obtained for an L1-datum f.
引用
收藏
页码:5509 / 5522
页数:14
相关论文
共 29 条
[11]  
Ammar K, 2009, REV MAT COMPLUT, V22, P37
[12]   A strongly nonlinear elliptic equation having natural growth terms and L1 data [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (04) :403-411
[13]   Study of some nonlinear elliptic equation with non-polynomial anisotropic growth [J].
Benslimane, Omar ;
Aberqi, Ahmed ;
Bennouna, Jaouad .
ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
[14]   Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev-Orlicz space [J].
Benslimane, Omar ;
Aberqi, Ahmed ;
Bennouna, Jaouad .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) :1579-1608
[15]   The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain [J].
Benslimane, Omar ;
Aberqi, Ahmed ;
Bennouna, Jaouad .
AXIOMS, 2020, 9 (03)
[16]   Estimates for solutions to nonlinear degenerate elliptic equations with lower order terms [J].
Betta, Maria Francesca ;
Ferone, Adele ;
Paderni, Gabriella .
RICERCHE DI MATEMATICA, 2020, 69 (01) :367-384
[17]  
Boccardo L, 2006, ADV NONLINEAR STUD, V6, P1
[18]   Calderon-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces [J].
Deringoz, F. ;
Guliyev, V. S. ;
Omarova, M. N. ;
Ragusa, M. A. .
BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (01)
[19]   Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces [J].
Dong, Ge ;
Fang, Xiaochun .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[20]  
Drabek P., 1995, POTENTIAL THEORY DEG, P475