Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems

被引:15
作者
Yin, Peipei [1 ]
Zhang, Yi [2 ]
Yang, Lingguang [1 ]
Feng, Yue [2 ]
机构
[1] Yichun Univ, Coll Chem & Biol Engn, Jiangxi Prov Key Lab Nat Act Pharmaceut Constituen, Yichun 336000, Peoples R China
[2] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing Key Lab Bioproc,State Key Lab Chem Resourc, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-CRISPR protein; type I CRISPR-Cas system; protein structure; inhibiton; strategy; GUIDED SURVEILLANCE COMPLEX; EVOLUTIONARY CLASSIFICATION; CRYSTAL-STRUCTURE; PAM RECOGNITION; MECHANISMS; RNA; INSIGHTS; DISCOVERY; BINDING;
D O I
10.1016/j.jmb.2023.167996
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mobile genetic elements (MGEs) such as bacteriophages and their host prokaryotes are trapped in an eternal battle against each other. To cope with foreign infection, bacteria and archaea have evolved mul-tiple immune strategies, out of which CRISPR-Cas system is up to now the only discovered adaptive sys-tem in prokaryotes. Despite the fact that CRISPR-Cas system provides powerful and delicate protection against MGEs, MGEs have also evolved anti-CRISPR proteins (Acrs) to counteract the CRISPR-Cas immune defenses. To date, 46 families of Acrs targeting type I CRISPR-Cas system have been charac-terized, out of which structure information of 21 families have provided insights on their inhibition strate-gies. Here, we review the non-canonical inhibition strategies adopted by Acrs targeting type I CRISPR-Cas systems based on their structure information by incorporating the most recent advances in this field, and discuss our current understanding and future perspectives. The delicate interplay between type I CRISPR-Cas systems and their Acrs provides us with important insights into the ongoing fierce arms race between prokaryotic hosts and their predators. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 91 条
[51]   Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor [J].
Mukherjee, Indranil Arun ;
Gabel, Clinton ;
Noinaj, Nicholas ;
Bondy-Denomy, Joseph ;
Chang, Leifu .
NATURE CHEMICAL BIOLOGY, 2022, 18 (12) :1417-+
[52]  
Niu Y., 2020, MOL CELL, V80, P5
[53]  
O'Brien RE, 2022, bioRxiv, DOI [10.1101/2022.06.15.496202, 10.1101/2022.06.15.496202, DOI 10.1101/2022.06.15.496202]
[54]   Structural basis for assembly of non-canonical small subunits into type I-C Cascade [J].
O'Brien, Roisin E. ;
Santos, Ines C. ;
Wrapp, Daniel ;
Bravo, Jack P. K. ;
Schwartz, Evan A. ;
Brodbelt, Jennifer S. ;
Taylor, David W. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[55]  
Osuna B.A., 2020, CELL HOST MICROBE, V28, P9
[56]   Rethinking Protein Drug Design with Highly Accurate Structure Prediction of Anti-CRISPR Proteins [J].
Park, Ho-Min ;
Park, Yunseol ;
Vankerschaver, Joris ;
Van Messem, Arnout ;
De Neve, Wesley ;
Shim, Hyunjin .
PHARMACEUTICALS, 2022, 15 (03)
[57]   Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance [J].
Pausch, Patrick ;
Mueller-Esparza, Hanna ;
Gleditzsch, Daniel ;
Altegoer, Florian ;
Randau, Lennart ;
Bange, Gert .
MOLECULAR CELL, 2017, 67 (04) :622-+
[58]   Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein [J].
Pawluk, April ;
Shah, Megha ;
Mejdani, Marios ;
Calmettes, Charles ;
Moraes, Trevor F. ;
Davidson, Alan R. ;
Maxwell, Karen L. .
MBIO, 2017, 8 (06)
[59]   Anti-CRISPR: discovery, mechanism and function [J].
Pawluk, April ;
Davidson, Alan R. ;
Maxwell, Karen L. .
NATURE REVIEWS MICROBIOLOGY, 2018, 16 (01) :12-17
[60]  
Pawluk A, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.85, 10.1038/nmicrobiol.2016.85]