Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems

被引:12
|
作者
Yin, Peipei [1 ]
Zhang, Yi [2 ]
Yang, Lingguang [1 ]
Feng, Yue [2 ]
机构
[1] Yichun Univ, Coll Chem & Biol Engn, Jiangxi Prov Key Lab Nat Act Pharmaceut Constituen, Yichun 336000, Peoples R China
[2] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing Key Lab Bioproc,State Key Lab Chem Resourc, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-CRISPR protein; type I CRISPR-Cas system; protein structure; inhibiton; strategy; GUIDED SURVEILLANCE COMPLEX; EVOLUTIONARY CLASSIFICATION; CRYSTAL-STRUCTURE; PAM RECOGNITION; MECHANISMS; RNA; INSIGHTS; DISCOVERY; BINDING;
D O I
10.1016/j.jmb.2023.167996
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mobile genetic elements (MGEs) such as bacteriophages and their host prokaryotes are trapped in an eternal battle against each other. To cope with foreign infection, bacteria and archaea have evolved mul-tiple immune strategies, out of which CRISPR-Cas system is up to now the only discovered adaptive sys-tem in prokaryotes. Despite the fact that CRISPR-Cas system provides powerful and delicate protection against MGEs, MGEs have also evolved anti-CRISPR proteins (Acrs) to counteract the CRISPR-Cas immune defenses. To date, 46 families of Acrs targeting type I CRISPR-Cas system have been charac-terized, out of which structure information of 21 families have provided insights on their inhibition strate-gies. Here, we review the non-canonical inhibition strategies adopted by Acrs targeting type I CRISPR-Cas systems based on their structure information by incorporating the most recent advances in this field, and discuss our current understanding and future perspectives. The delicate interplay between type I CRISPR-Cas systems and their Acrs provides us with important insights into the ongoing fierce arms race between prokaryotic hosts and their predators. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
    Bondy-Denomy, Joseph
    Garcia, Bianca
    Strum, Scott
    Du, Mingjian
    Rollins, MaryClare F.
    Hidalgo-Reyes, Yurima
    Wiedenheft, Blake
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE, 2015, 526 (7571) : 136 - +
  • [2] Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins
    Yuwei Zhu
    Fan Zhang
    Zhiwei Huang
    BMC Biology, 16
  • [3] Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins
    Zhu, Yuwei
    Zhang, Fan
    Huang, Zhiwei
    BMC BIOLOGY, 2018, 16
  • [4] Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins
    Zhang, Heng
    Li, Zhuang
    Daczkowski, Courtney M.
    Gabel, Clinton
    Mesecar, Andrew D.
    Chang, Leifu
    CELL HOST & MICROBE, 2019, 25 (06) : 815 - +
  • [5] Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein
    Manav, M. Cemre
    Van, Lan B.
    Lin, Jinzhong
    Fuglsang, Anders
    Peng, Xu
    Brodersen, Ditlev E.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins
    Yang, Lingguang
    Zhang, Yi
    Yin, Peipei
    Feng, Yue
    RNA BIOLOGY, 2021, 18 : 562 - 573
  • [7] Gene Digital Circuits Based on CRISPR-Cas Systems and Anti-CRISPR Proteins
    Yu, Lifang
    Zhang, Yadan
    Marchisio, Mario Andrea
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (188):
  • [8] Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    Pawluk, April
    Staals, Raymond H. J.
    Taylor, Corinda
    Watson, Bridget N. J.
    Saha, Senjuti
    Fineran, Peter C.
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE MICROBIOLOGY, 2016, 1 (08)
  • [9] Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    Pawluk A.
    Staals R.H.J.
    Taylor C.
    Watson B.N.J.
    Saha S.
    Fineran P.C.
    Maxwell K.L.
    Davidson A.R.
    Nature Microbiology, 1 (8)
  • [10] Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance
    Kadkhoda, Hiva
    Gholizadeh, Pourya
    Kafil, Hossein Samadi
    Ghotaslou, Reza
    Pirzadeh, Tahereh
    Rezaee, Mohammad Ahangarzadeh
    Nabizadeh, Edris
    Feizi, Hadi
    Aghazadeh, Mohammad
    HELIYON, 2024, 10 (14)