Parameterizable Design on Convolutional Neural Networks Using Chisel Hardware Construction Language

被引:2
|
作者
Madineni, Mukesh Chowdary [1 ]
Vega, Mario [1 ]
Yang, Xiaokun [1 ]
机构
[1] Univ Houston Clear Lake, Houston, TX 77058 USA
关键词
convolutional neural network (CNN); Chisel HCL; FPGA; register-transfer level; Verilog HDL;
D O I
10.3390/mi14030531
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a parameterizable design generator on convolutional neural networks (CNNs) using the Chisel hardware construction language (HCL). By parameterizing structural designs such as the streaming width, pooling layer type, and floating point precision, multiple register-transfer level (RTL) implementations can be created to meet various accuracy and hardware cost requirements. The evaluation is based on generated RTL designs including 16-bit, 32-bit, 64-bit, and 128-bit implementations on field-programmable gate arrays (FPGAs). The experimental results show that the 32-bit design achieves optimal hardware performance when setting the same weights for estimating the quality of the results, FPGA slice count, and power dissipation. Although the focus is on CNNs, the approach can be extended to other neural network models for efficient RTL design.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Hardware Design for MAS Power Distribution Restoration using Neural Networks
    Mashta, Mohamad A.
    Choudhry, M. A.
    Feliachi, Ali
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [42] CoEvolvable hardware platform for automatic hardware design of neural networks
    Hammami, O
    Kuroda, K
    Zhao, Q
    Saito, K
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY 2000, VOLS 1 AND 2, 2000, : 509 - 514
  • [43] LPI Waveform Recognition Using Adaptive Feature Construction and Convolutional Neural Networks
    Huang, Hui
    Li, Yi
    Liu, Jiaoyue
    Shen, Dan
    Chen, Genshe
    Blasch, Erik
    Pham, Khanh
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2023, 38 (04) : 14 - 26
  • [44] Interpretation of Swedish Sign Language Using Convolutional Neural Networks and Transfer Learning
    Halvardsson G.
    Peterson J.
    Soto-Valero C.
    Baudry B.
    SN Computer Science, 2021, 2 (3)
  • [45] Optimization of Convolutional Neural Networks Architectures Using PSO for Sign Language Recognition
    Fregoso, Jonathan
    Gonzalez, Claudia, I
    Martinez, Gabriela E.
    AXIOMS, 2021, 10 (03)
  • [46] Using Convolutional Neural Networks for Fingerspelling Sign Recognition in Brazilian Sign Language
    Lima, Douglas F. L.
    Salvador Neto, Armando S.
    Santos, Ewerton N.
    Araujo, Tiago Maritan U.
    Rego, Thais Gaudencio
    WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2019, : 109 - 115
  • [47] SIGN LANGUAGE RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Jie
    Zhou, Wengang
    Li, Houqiang
    Li, Weiping
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [48] Recognizing Hand Configurations of Brazilian Sign Language Using Convolutional Neural Networks
    Oliveria, A. S.
    Costa Filho, C. F. F.
    Costa, M. G. F.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 421 - 427
  • [49] Hardware design issues of fuzzy neural networks
    Gobi, AF
    Pedrycz, W
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 587 - 592
  • [50] Tamper Resistant Design of Convolutional Neural Network Hardware Accelerator
    Yu, Haosen
    Sun, Peiyao
    Halak, Basel
    Shanthakumar, Karthik
    Kazmierski, Tomasz
    2023 ASIAN HARDWARE ORIENTED SECURITY AND TRUST SYMPOSIUM, ASIANHOST, 2023,