Parameter estimation of gravitational waves with a quantum metropolis algorithm

被引:8
作者
Escrig, Gabriel [1 ]
Campos, Roberto [1 ,2 ]
Casares, Pablo A. M. [1 ]
Martin-Delgado, M. A. [1 ,3 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor, Madrid, Spain
[2] Quasar Sci Resources, SL, Madrid, Spain
[3] Univ Politecn Madrid, CCS Ctr Computat Simulat, Madrid, Spain
关键词
gravitational waves; quantum walks; Metropolis-Hastings algorithms;
D O I
10.1088/1361-6382/acafcf
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
After the first detection of a gravitational wave in 2015, the number of successes achieved by this innovative way of looking through the Universe has not stopped growing. However, the current techniques for analyzing this type of events present a serious bottleneck due to the high computational power they require. In this article we explore how recent techniques based on quantum algorithms could surpass this obstacle. For this purpose, we propose a quantization of the classical algorithms used in the literature for the inference of gravitational wave parameters based on the well-known quantum walks technique applied to a Metropolis-Hastings algorithm. Finally, we develop a quantum environment on classical hardware, implementing a metric to compare quantum versus classical algorithms in a fair way. We further test all these developments in the real inference of several sets of parameters of all the events of the first detection period GWTC-1 and we find a polynomial advantage in the quantum algorithms, thus setting a first starting point for future algorithms.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Analog quantum simulation of gravitational waves in a Bose-Einstein condensate [J].
Bravo, Tupac ;
Sabin, Carlos ;
Fuentes, Ivette .
EPJ QUANTUM TECHNOLOGY, 2015, 2
[32]   Bound on quantum fluctuations in gravitational waves from LIGO-Virgo [J].
Hertzberg, Mark P. ;
Litterer, Jacob A. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (03)
[33]   An improved algorithm for narrow-band searches of continuous gravitational waves [J].
Mastrogiovanni, S. ;
Astone, P. ;
D'Antonio, S. ;
Frasca, S. ;
Intini, G. ;
Leaci, P. ;
Miller, A. ;
Palomba, C. ;
Piccinni, O. J. ;
Singhal, A. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (13)
[34]   Gravitational waves at their own gravitational speed [J].
Unnikrishnan, C. S. ;
Gillies, George T. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (14)
[35]   Gravitational Lensing of Continuous Gravitational Waves [J].
Biesiada, Marek ;
Harikumar, Sreekanth .
UNIVERSE, 2021, 7 (12)
[36]   Anatomy of parameter-estimation biases in overlapping gravitational-wave signals [J].
Wang, Ziming ;
Liang, Dicong ;
Zhao, Junjie ;
Liu, Chang ;
Shao, Lijing .
CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (05)
[37]   Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves [J].
Saleem, M. ;
Resmi, L. ;
Misra, Kuntal ;
Pai, Archana ;
Arun, K. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (04) :5340-5350
[38]   Fast Bayesian gravitational wave parameter estimation using convolutional neural networks [J].
Andres-Carcasona, M. ;
Martinez, M. ;
Mir, Ll M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) :2887-2894
[39]   An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models [J].
O'Shaughnessy, Richard ;
Blackman, Jonathan ;
Field, Scott E. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
[40]   Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations [J].
Edwards, Matthew C. ;
Meyer, Renate ;
Christensen, Nelson .
INVERSE PROBLEMS, 2014, 30 (11)