Parameter estimation of gravitational waves with a quantum metropolis algorithm

被引:8
作者
Escrig, Gabriel [1 ]
Campos, Roberto [1 ,2 ]
Casares, Pablo A. M. [1 ]
Martin-Delgado, M. A. [1 ,3 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor, Madrid, Spain
[2] Quasar Sci Resources, SL, Madrid, Spain
[3] Univ Politecn Madrid, CCS Ctr Computat Simulat, Madrid, Spain
关键词
gravitational waves; quantum walks; Metropolis-Hastings algorithms;
D O I
10.1088/1361-6382/acafcf
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
After the first detection of a gravitational wave in 2015, the number of successes achieved by this innovative way of looking through the Universe has not stopped growing. However, the current techniques for analyzing this type of events present a serious bottleneck due to the high computational power they require. In this article we explore how recent techniques based on quantum algorithms could surpass this obstacle. For this purpose, we propose a quantization of the classical algorithms used in the literature for the inference of gravitational wave parameters based on the well-known quantum walks technique applied to a Metropolis-Hastings algorithm. Finally, we develop a quantum environment on classical hardware, implementing a metric to compare quantum versus classical algorithms in a fair way. We further test all these developments in the real inference of several sets of parameters of all the events of the first detection period GWTC-1 and we find a polynomial advantage in the quantum algorithms, thus setting a first starting point for future algorithms.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Implementation of a generalized precession parameter in the RIFT parameter estimation algorithm [J].
Henshaw, Chad ;
O'Shaughnessy, Richard ;
Cadonati, Laura .
CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (12)
[22]   A targeted spectral interpolation algorithm for the detection of continuous gravitational waves [J].
Davies, Gareth S. ;
Pitkin, Matthew ;
Woan, Graham .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (01)
[23]   Quantum Metropolis-Hastings algorithm with the target distribution calculated by quantum Monte Carlo integration [J].
Miyamoto, Koichi .
PHYSICAL REVIEW RESEARCH, 2023, 5 (03)
[24]   On the gravitational scattering of gravitational waves [J].
Sorge, Francesco .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (03)
[25]   Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms [J].
Mandel, Ilya ;
Berry, Christopher P. L. ;
Ohme, Frank ;
Fairhurst, Stephen ;
Farr, Will M. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (15)
[26]   Parameter Estimation Precision with Geocentric Gravitational Wave Interferometers: Monochromatic Signals [J].
Sousa, Manoel Felipe ;
Ferreira, Tabata Aira ;
Tinto, Massimo .
UNIVERSE, 2025, 11 (04)
[27]   Astrophysical parameter inference on accreting white dwarf binaries using gravitational waves [J].
Yi, Sophia ;
Lau, Shu Yan ;
Yagi, Kent ;
Arras, Phil .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (04) :4681-4691
[28]   Gravitational waves [J].
Lazkoz, R ;
Kroon, JAV .
REVISTA MEXICANA DE FISICA, 2003, 49 (04) :384-390
[29]   DATA ANALYSIS FOR GRAVITATIONAL WAVES USING NEURAL NETWORKS ON QUANTUM COMPUTERS [J].
Isfan, Maria-Catalina ;
Caramete, Laurentiu-Ioan ;
Caramete, Ana ;
Basceanu, Vlad-Andrei ;
Popescu, Traian .
ROMANIAN REPORTS IN PHYSICS, 2023, 75 (02)
[30]   Analog quantum simulation of gravitational waves in a Bose-Einstein condensate [J].
Tupac Bravo ;
Carlos Sabín ;
Ivette Fuentes .
EPJ Quantum Technology, 2