The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress

被引:35
|
作者
Liu, Yuexu [1 ]
Lu, Jinhao [1 ]
Cui, Li [2 ]
Tang, Zhaohui [2 ]
Ci, Dunwei [3 ]
Zou, Xiaoxia [1 ]
Zhang, Xiaojun [1 ]
Yu, Xiaona [1 ]
Wang, Yuefu [1 ]
Si, Tong [1 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Shandong Prov Key Lab Dryland Farming Technol, Qingdao 266109, Peoples R China
[2] Shandong Acad Agr Sci SAAS, Inst Crop Germplasm Resources, Jinan 250100, Peoples R China
[3] Shandong Peanut Res Inst, Qingdao 266199, Peoples R China
基金
中国国家自然科学基金;
关键词
AMF; Legumes; Environmental stress; Plant physiology; Metabolic pathway; PHOTOSYNTHETIC ELECTRON-TRANSPORT; CHLOROPHYLL FLUORESCENCE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; PLANT DEVELOPMENT; AMINO-ACIDS; SALINITY; ROS; ACCUMULATION; TOLERANCE;
D O I
10.1186/s12870-023-04053-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundArbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively.ResultsAMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data.ConclusionThis study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Mathur, Sonal
    Tomar, Rupal Singh
    Jajoo, Anjana
    PHOTOSYNTHESIS RESEARCH, 2019, 139 (1-3) : 227 - 238
  • [42] The roles and performance of arbuscular mycorrhizal fungi in intercropping systems
    Li, Minghui
    Hu, Junli
    Lin, Xiangui
    SOIL ECOLOGY LETTERS, 2022, 4 (04) : 319 - 327
  • [43] Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi
    Xie, Kun
    Ren, Yuhan
    Chen, Aiqun
    Yang, Congfan
    Zheng, Qingsong
    Chen, Jun
    Wang, Dongsheng
    Li, Yiting
    Hu, Shuijin
    Xu, Guohua
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 269
  • [44] Arbuscular Mycorrhizal Fungi-Mediated Modulation of Physiological, Biochemical, and Secondary Metabolite Responses in Hemp (Cannabis sativa L.) under Salt and Drought Stress
    Yuan, Haipeng
    Si, Hao
    Ye, Yunshu
    Ji, Qiuyan
    Wang, Haoyu
    Zhang, Yuhong
    JOURNAL OF FUNGI, 2024, 10 (04)
  • [45] The roles and performance of arbuscular mycorrhizal fungi in intercropping systems
    Minghui Li
    Junli Hu
    Xiangui Lin
    Soil Ecology Letters, 2022, 4 : 319 - 327
  • [46] Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses
    Janah, Iman
    Meddich, Abdelilah
    Elhasnaoui, Abdelhadi
    Khayat, Sara
    Anli, Mohamed
    Boutasknit, Abderrahim
    Aissam, Salama
    Loutfi, Kenza
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (01) : 152 - 162
  • [47] Endophytic fungus improves peanut drought resistance by reassembling the root-dwelling community of arbuscular mycorrhizal fungi
    Xu, Fang-Ji
    Song, Shi-Li
    Ma, Chen-Yu
    Zhang, Wei
    Sun, Kai
    Tang, Meng-Jun
    Xie, Xing-Guang
    Fan, Kun-Kun
    Dai, Chuan-Chao
    FUNGAL ECOLOGY, 2020, 48
  • [48] Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress
    Li, Ao
    Wu, Chengxu
    Zheng, Xu
    Nie, Ruining
    Tang, Jiali
    Ji, Xinying
    Zhang, Junpei
    RHIZOSPHERE, 2024, 31
  • [49] Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses
    Iman Janah
    Abdelilah Meddich
    Abdelhadi Elhasnaoui
    Sara Khayat
    Mohamed Anli
    Abderrahim Boutasknit
    Salama Aissam
    Kenza Loutfi
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 152 - 162
  • [50] Responses of the arbuscular mycorrhizal fungi community to warming coupled with increased drought in an arid desert region
    Xie, Ting
    Lin, Yuwei
    Li, Xinrong
    GEODERMA, 2024, 441