The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress

被引:35
|
作者
Liu, Yuexu [1 ]
Lu, Jinhao [1 ]
Cui, Li [2 ]
Tang, Zhaohui [2 ]
Ci, Dunwei [3 ]
Zou, Xiaoxia [1 ]
Zhang, Xiaojun [1 ]
Yu, Xiaona [1 ]
Wang, Yuefu [1 ]
Si, Tong [1 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Shandong Prov Key Lab Dryland Farming Technol, Qingdao 266109, Peoples R China
[2] Shandong Acad Agr Sci SAAS, Inst Crop Germplasm Resources, Jinan 250100, Peoples R China
[3] Shandong Peanut Res Inst, Qingdao 266199, Peoples R China
基金
中国国家自然科学基金;
关键词
AMF; Legumes; Environmental stress; Plant physiology; Metabolic pathway; PHOTOSYNTHETIC ELECTRON-TRANSPORT; CHLOROPHYLL FLUORESCENCE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; PLANT DEVELOPMENT; AMINO-ACIDS; SALINITY; ROS; ACCUMULATION; TOLERANCE;
D O I
10.1186/s12870-023-04053-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundArbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively.ResultsAMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data.ConclusionThis study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress
    Gao, Tengteng
    Liu, Xiaomin
    Shan, Lei
    Wu, Qian
    Liu, Yuan
    Zhang, Zhijun
    Ma, Fengwang
    Li, Chao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [32] Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress
    Wang, Yanhong
    Wang, Minqiang
    Li, Yan
    Wu, Aiping
    Huang, Juying
    PLOS ONE, 2018, 13 (04):
  • [33] Arbuscular mycorrhizal fungi and salinity stress mitigation in plants
    Boorboori, Mohammad Reza
    Lackoova, Lenka
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [34] The impact of arbuscular mycorrhizal fungi on soybean growth strategies in response to salt stress
    Pu, Zitian
    Hu, Ruilong
    Wang, Dandan
    Wang, Chao
    Chen, Yinglong
    Wang, Shan
    Zhuge, Yuping
    Xie, Zhihong
    PLANT AND SOIL, 2024, : 929 - 943
  • [35] Arbuscular mycorrhizal fungi mitigate cadmium stress in maize
    Kuang, Qiqiang
    Wu, Yujie
    Gao, Yamin
    An, Tingting
    Liu, Shuo
    Liang, Liyan
    Xu, Bingcheng
    Zhang, Suiqi
    Yu, Min
    Shabala, Sergey
    Chen, Yinglong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2025, 289
  • [36] Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress
    Pollastri, Susanna
    Savvides, Andreas
    Pesando, Massimo
    Lumini, Erica
    Volpe, Maria Grazia
    Ozudogru, Elif Aylin
    Faccio, Antonella
    De Cunzo, Fausta
    Michelozzi, Marco
    Lambardi, Maurizio
    Fotopoulos, Vasileios
    Loreto, Francesco
    Centritto, Mauro
    Balestrini, Raffaella
    PLANTA, 2018, 247 (03) : 573 - 585
  • [37] Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress
    Hashem, Abeer
    Abd allah, Elsayed Fathi
    Alqarawi, Abdulaziz A.
    Wirth, Stephan
    Egamberdieva, Dilfuza
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (01) : 38 - 48
  • [38] Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis
    Zong, Jianwei
    Zhang, Zhilong
    Huang, Peilu
    Yang, Yuhua
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [39] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Mathur, Sonal
    Tomar, Rupal Singh
    Jajoo, Anjana
    PHOTOSYNTHESIS RESEARCH, 2019, 139 (1-3) : 227 - 238
  • [40] Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi
    Asrar, Abdul-Wasea A.
    Elhindi, Khalid M.
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2011, 18 (01) : 93 - 98