The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress

被引:46
作者
Liu, Yuexu [1 ]
Lu, Jinhao [1 ]
Cui, Li [2 ]
Tang, Zhaohui [2 ]
Ci, Dunwei [3 ]
Zou, Xiaoxia [1 ]
Zhang, Xiaojun [1 ]
Yu, Xiaona [1 ]
Wang, Yuefu [1 ]
Si, Tong [1 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Shandong Prov Key Lab Dryland Farming Technol, Qingdao 266109, Peoples R China
[2] Shandong Acad Agr Sci SAAS, Inst Crop Germplasm Resources, Jinan 250100, Peoples R China
[3] Shandong Peanut Res Inst, Qingdao 266199, Peoples R China
基金
中国国家自然科学基金;
关键词
AMF; Legumes; Environmental stress; Plant physiology; Metabolic pathway; PHOTOSYNTHETIC ELECTRON-TRANSPORT; CHLOROPHYLL FLUORESCENCE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; PLANT DEVELOPMENT; AMINO-ACIDS; SALINITY; ROS; ACCUMULATION; TOLERANCE;
D O I
10.1186/s12870-023-04053-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundArbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively.ResultsAMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data.ConclusionThis study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment.
引用
收藏
页数:19
相关论文
共 107 条
[1]  
Abdel-Latef A.A.H.A., 2014, Use of microbes for the alleviation of soil stresses, P23, DOI [DOI 10.1007/978-1-4939-0721-2_2, 10.1007/978-1-4939-0721-22, DOI 10.1007/978-1-4939-0721-22]
[2]   Hormone interactions in stomatal function [J].
Acharya, Biswa R. ;
Assmann, Sarah M. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :451-462
[3]   Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis [J].
Amtmann, Anna ;
Armengaud, Patrick .
CURRENT OPINION IN PLANT BIOLOGY, 2009, 12 (03) :275-283
[4]   Effect of mid season drought on phenolic compounds in peanut genotypes with different levels of resistance to drought [J].
Aninbon, Chorkaew ;
Jogloy, Sanun ;
Vorasoot, Nimitr ;
Nuchadomrong, Suporn ;
Senawong, Thanaset ;
Holbrook, C. Corley ;
Patanothai, Aran .
FIELD CROPS RESEARCH, 2016, 187 :127-134
[5]   How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? [J].
Aroca, Ricardo ;
Porcel, Rosa ;
Ruiz-Lozano, Juan Manuel .
NEW PHYTOLOGIST, 2007, 173 (04) :808-816
[6]   Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying [J].
Barzana, Gloria ;
Aroca, Ricardo ;
Manuel Ruiz-Lozano, Juan .
PLANT CELL AND ENVIRONMENT, 2015, 38 (08) :1613-1627
[7]   The role of amino acid metabolism during abiotic stress release [J].
Batista-Silva, Willian ;
Heinemann, Bjoern ;
Rugen, Nils ;
Nunes-Nesi, Adriano ;
Araujo, Wagner L. ;
Braun, Hans-Peter ;
Hildebrandt, Tatjana M. .
PLANT CELL AND ENVIRONMENT, 2019, 42 (05) :1630-1644
[8]   ROS as key players in plant stress signalling [J].
Baxter, Aaron ;
Mittler, Ron ;
Suzuki, Nobuhiro .
JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (05) :1229-1240
[9]   Recent insights into antioxidant defenses of legume root nodules [J].
Becana, Manuel ;
Matamoros, Manuel A. ;
Udvardi, Michael ;
Dalton, David A. .
NEW PHYTOLOGIST, 2010, 188 (04) :960-976
[10]   AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up regulating antioxidant metabolism and osmolyte accumulation [J].
Begum, Naheeda ;
Ahanger, Muhammad Abass ;
Zhang, Lixin .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 176