On discrete mean value of automorphic L-functions

被引:0
作者
Chen, Yu [1 ]
Yao, Weili [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Automorphic L-function; Cusp form; Fourier coefficient; Dirichlet characters; FOURIER COEFFICIENTS; BOUNDS; WEIGHT;
D O I
10.1007/s13226-023-00371-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be any normalized Hecke eigen forms with even integral weight k >= 2 for the full modular group SL(2, Z), and chi be a primitive Dirichlet character modulo q. Let L f (s, chi) be the automorphic L-function attached to f and chi. In this paper, we study the mean-square estimate of L (f) (s, chi) weighted by incomplete character sums, via using properties of Fourier coefficients and analytic methods, and establish an asymptotic formula which refines the previous results.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 15 条
[1]   Shifted convolution sums and subconvexity bounds for automorphic L-functions [J].
Blomer, V .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (73) :3905-3926
[2]   Hybrid bounds for twisted L-functions [J].
Blomer, Valentin ;
Harcos, Gergely .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 621 :53-79
[3]   Sums of Hecke Eigenvalues over Values of Quadratic Polynomials [J].
Blomer, Valentin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[4]  
Deligne P., 1974, I. Inst. Hautes Etudes Sci. Publ. Math., P273, DOI 10.1007/BF02684373
[5]   BOUNDS FOR AUTOMORPHIC L-FUNCTIONS [J].
DUKE, W ;
FRIEDLANDER, J ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :1-8
[6]   Summation formulae for coefficients of L-functions [J].
Friedlander, JB ;
Iwaniec, H .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (03) :494-505
[7]   An additive problem in the Fourier coefficients of cusp forms [J].
Harcos, G .
MATHEMATISCHE ANNALEN, 2003, 326 (02) :347-365
[8]   Sums of absolute values of cusp form coefficients and their application [J].
Lu, Guangshi .
JOURNAL OF NUMBER THEORY, 2014, 139 :29-43
[9]   Contributions to the theory of Ramanujan's function tau-(n) and similar arithmetical functions II. The order of the fourier coefficients of integral modular forms [J].
Rankin, RA ;
Hardy, GH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :357-372
[10]   Estimates for Rankin-Selberg L-functions and quantum unique ergodicity [J].
Sarnak, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 184 (02) :419-453