A Version of Hormander's Theorem for Markovian Rough Paths

被引:0
作者
Yang, Guang [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Markovian rough paths; Hormander's theorem; Malliavin calculus; HYPOELLIPTIC SDES DRIVEN; ERGODICITY; LAWS;
D O I
10.1007/s11118-022-10046-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a rough differential equation of the form dY(t) = n-ary sumation V-i(i)(Y-t)dXti + V-0(Y-t)dt, where X-t is a Markovian rough path. We demonstrate that if the vector fields (V-i)(0 <= i <= d) satisfy the parabolic Hormander's condition, then Y-t admits a smooth density with a Gaussian type upper bound, given that the generator of X-t satisfy certain non-degenerate conditions. The main new ingredient of this paper is the study of a non-degenerate property of the Jacobian process of X-t.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 19 条
[1]   ON PROBABILITY LAWS OF SOLUTIONS TO DIFFERENTIAL SYSTEMS DRIVEN BY A FRACTIONAL BROWNIAN MOTION [J].
Baudoin, F. ;
Nualart, E. ;
Ouyang, C. ;
Tindel, S. .
ANNALS OF PROBABILITY, 2016, 44 (04) :2554-2590
[2]   A version of Hormander's theorem for the fractional Brownian motion [J].
Baudoin, Fabrice ;
Hairer, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) :373-395
[3]   SMOOTHNESS OF THE DENSITY FOR SOLUTIONS TO GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS [J].
Cass, Thomas ;
Hairer, Martin ;
Litterer, Christian ;
Tindel, Samy .
ANNALS OF PROBABILITY, 2015, 43 (01) :188-239
[4]   INTEGRABILITY AND TAIL ESTIMATES FOR GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS [J].
Cass, Thomas ;
Litterer, Christian ;
Lyons, Terry .
ANNALS OF PROBABILITY, 2013, 41 (04) :3026-3050
[5]  
Cass T, 2010, ANN MATH, V171, P2115
[6]   A support and density theorem for Markovian rough paths [J].
Chevyrev, Ilya ;
Ogrodnik, Marcel .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[7]  
FRIZ P. K., 2010, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, V120, DOI 10.1017/cbo9780511845079
[8]   On uniformly subelliptic operators and stochastic area [J].
Friz, Peter ;
Victoir, Nicolas .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :475-523
[9]   Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion [J].
Hairer, M. ;
Pillai, N. S. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02) :601-628
[10]   REGULARITY OF LAWS AND ERGODICITY OF HYPOELLIPTIC SDES DRIVEN BY ROUGH PATHS [J].
Hairer, Martin ;
Pillai, Natesh S. .
ANNALS OF PROBABILITY, 2013, 41 (04) :2544-2598