Understanding Potential Losses and pH Distribution in the Electrochemical Nitrate Reduction Reaction to Ammonia

被引:6
|
作者
Ahmadi, Maryam [1 ]
Nazemi, Mohammadreza [1 ,2 ]
机构
[1] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Sch Mat Sci & Engn, Ft Collins, CO 80524 USA
基金
美国国家科学基金会;
关键词
WATER; SINGLE; DRIVEN; FUEL; CELLS;
D O I
10.1021/acs.iecr.3c04540
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Electrochemical nitrate reduction reaction (NO3-RR) to ammonia is a promising route to eliminate one of the major pollutants in surface water and groundwater. When powered by renewable electricity, electrolysis provides a sustainable method to generate ammonia from nitrate ions, facilitating the transition from a linear to a circular economy. Optimizing the physical and chemical properties of electrolysis cells is crucial to making this process economically viable for widespread implementation. Here, we explore how the choice of current density, conductivity, pH, interelectrode distance, membrane, catalyst, and buffer solution affect nitrate removal performance and efficiency. We developed a modeling framework to investigate the cell characteristics and fluid dynamics during electrochemical NO3-RR using both laminar and bubbly flows. To obtain more precise results, we employed the bubbly flow model (i.e., multiphase fluid) to take into account how gas production near the electrode surface affects liquid velocity, pH distribution, and, ultimately, potential losses. We exploit mass transfer theory to include the current density effect on migration and diffusion. In the absence of a buffer solution, the Nernstian loss became a significant portion of the polarization loss, which increased with current density. We identified the positive effect of the membrane on energy efficiency as being more significant at smaller interelectrode distances. This study provides insights into the origin of potential losses and pH distribution, enabling electrochemical cell optimization for renewable fuel synthesis.
引用
收藏
页码:9315 / 9328
页数:14
相关论文
共 50 条
  • [31] Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets
    Fu, Xianbiao
    Zhao, Xingang
    Hu, Xiaobing
    He, Kun
    Yu, Yanan
    Li, Tao
    Tu, Qing
    Qian, Xin
    Yue, Qin
    Wasielewski, Michael R.
    Kang, Yijin
    APPLIED MATERIALS TODAY, 2020, 19 (19)
  • [32] Electron engineering of nickel phosphide for Niδ+ in electrochemical nitrate reduction to ammonia
    Jie Hu
    Hao Huang
    Miao Yu
    Shuang Wang
    Jinping Li
    Nano Research, 2024, 17 : 4864 - 4871
  • [33] Structure Sensitivity of Pd Facets for Enhanced Electrochemical Nitrate Reduction to Ammonia
    Lim, Jeonghoon
    Liu, Chun-Yen
    Park, Jinho
    Liu, Yu-Hsuan
    Senftle, Thomas P.
    Lee, Seung Woo
    Hatzell, Marta C.
    ACS CATALYSIS, 2021, 11 (12) : 7568 - 7577
  • [34] Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode
    McEnaney, Joshua M.
    Blair, Sarah J.
    Nielander, Adam C.
    Schwalbe, Jay A.
    Koshy, David M.
    Cargnello, Matteo
    Jaramillo, Thomas F.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (07) : 2672 - 2681
  • [35] Recent Advances in Designing Efficient Electrocatalysts for Electrochemical Nitrate Reduction to Ammonia
    Liang, Xingyou
    Zhu, Haiding
    Yang, Xiaoxuan
    Xue, Sensen
    Liang, Zhuangzhuang
    Ren, Xuefeng
    Liu, Anmin
    Wu, Gang
    SMALL STRUCTURES, 2023, 4 (06):
  • [36] Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor
    Chen, Feng-Yang
    Elgazzar, Ahmad
    Pecaut, Stephanie
    Qiu, Chang
    Feng, Yuge
    Ashokkumar, Sushanth
    Yu, Zhou
    Sellers, Chase
    Hao, Shaoyun
    Zhu, Peng
    Wang, Haotian
    NATURE CATALYSIS, 2024, 7 (09): : 1032 - 1043
  • [37] High entropy borides as efficient catalysts for electrochemical reduction of nitrate to ammonia
    Chen, Peiyan
    Zhong, Wenye
    Gong, Zhiheng
    Cao, Qiwu
    Tang, Haifeng
    Chu, Yanhui
    Chen, Yan
    CATALYSIS TODAY, 2024, 439
  • [38] Effect of valence state on electrochemical nitrate reduction to ammonia in molybdenum catalysts
    Yan, Jianyue
    Liu, Peng
    Li, Jiawen
    Huang, Hao
    Song, Wenbo
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [39] Electrochemical ammonia synthesis by reduction of nitrate on Au doped Cu nanowires
    Zha, Yuankang
    Liu, Min
    Wang, Jinlu
    Feng, Jiyu
    Li, Daopeng
    Zhao, Dongnan
    Zhang, Shengbo
    Shi, Tongfei
    RSC ADVANCES, 2023, 13 (15) : 9839 - 9844
  • [40] Periodic Table Exploration of MXenes for Efficient Electrochemical Nitrate Reduction to Ammonia
    Nittoor-Veedu, Radhika
    Ju, Xiaohui
    Langer, Michal
    Gao, Wanli
    Otyepka, Michal
    Pumera, Martin
    SMALL, 2025, 21 (10)