Numerical study of minority ion heating scenarios in a spherical tokamak plasma

被引:3
作者
Chen, You [1 ,2 ,3 ]
Yin, Lan [1 ,2 ,3 ]
Peng, Yaoyi [2 ]
Ma, Wankun [2 ]
Zhou, Fangbei [2 ]
Wang, Shuangshuang [2 ]
Gong, Xueyu [2 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
[3] Univ South China, Hunan Key Lab Math Modeling & Sci Comp, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
CYCLOTRON-RESONANCE; WAVES; SIMULATION; DESIGN; SYSTEM;
D O I
10.1063/5.0187061
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, D(H) minority ion cyclotron resonance heating (ICRH) scenarios in Nan Chang spherical tokamak (NCST) were simulated using the full-wave code TORIC. NCST is a low-aspect-ratio (R/a = 1.67) spherical tokamak, with its core plasma parameters characterized by a magnetic field intensity of 0.36 T and a density of 10(18 )m(-3). Our simulation results demonstrate that the ion cyclotron wave can penetrate the core plasma of the NCST more effectively with a lower toroidal mode number, indicating that resonant ions can absorb the wave energy efficiently. Furthermore, it is found that as the minority ion H concentration is increased, a noticeable decline in the left-handed electric field adjacent to the ion cyclotron resonance layer is observed. Optimal heating efficiency is attained when maintaining a minority ion H concentration within the range 5%-10%. The minority ion velocity distribution was simulated to estimate the tail temperature of minority-ICRH, which is expected to exceed 10 keV. The difference in the power efficiency with different plasma compositions [Ar(H) and D(H)] was also simulated. When the H-ion cyclotron resonance layer is located at the core plasma, the power-absorption fraction of H in Ar(H) plasma surpasses that of D and H combined in D(H) plasma under identical conditions. These simulations provide a crucial foundation and theoretical reference not only for NCST but also for other spherical tokamaks conducting ICRH experiments.
引用
收藏
页数:12
相关论文
共 53 条
[1]   First Globus-M2 Results [J].
Bakharev, N. N. ;
Balachenkov, I. M. ;
Chernyshev, F. V. ;
Chugunov, I. N. ;
Dyachenko, V. V. ;
Gusev, V. K. ;
Iliasova, M. V. ;
Khilkevitch, E. M. ;
Khromov, N. A. ;
Kiselev, E. O. ;
Konovalov, A. N. ;
Kurskiev, G. S. ;
Minaev, V. B. ;
Melnik, A. D. ;
Miroshnikov, I. V. ;
Novokhatsky, A. N. ;
Patrov, M. I. ;
Petrov, Yu. V. ;
Sakharov, N. V. ;
Shchegolev, P. B. ;
Shevelev, A. E. ;
Skrekel, O. M. ;
Telnova, A. Yu. ;
Tokarev, V. A. ;
Tolstyakov, S. Yu. ;
Tukhmeneva, E. A. ;
Varfolomeev, V. I. ;
Voronin, A. V. .
PLASMA PHYSICS REPORTS, 2020, 46 (07) :675-682
[2]   3-DIMENSIONAL THEORY OF WAVEGUIDE-PLASMA COUPLING [J].
BERS, A ;
THEILHABER, KS .
NUCLEAR FUSION, 1983, 23 (01) :41-48
[3]   A 3-D ANALYSIS OF THE COUPLING CHARACTERISTICS OF ION-CYCLOTRON RESONANCE HEATING ANTENNAE [J].
BHATNAGAR, VP ;
KOCH, R ;
MESSIAEN, AM ;
WEYNANTS, RR .
NUCLEAR FUSION, 1982, 22 (02) :280-288
[4]   RAY-TRACING MODELING OF THE ICRF HEATING OF LARGE TOKAMAKS [J].
BHATNAGAR, VP ;
KOCH, R ;
GEILFUS, P ;
KIRKPATRICK, R ;
WEYNANTS, RR .
NUCLEAR FUSION, 1984, 24 (08) :955-976
[5]   Influence of an evanescence layer in front of the antenna on the coupling efficiency of ion cyclotron waves [J].
Bilato, R ;
Brambilla, M ;
Hartmann, DA ;
Parisot, A .
NUCLEAR FUSION, 2005, 45 (02) :L5-L7
[6]   QUASI-LINEAR ION DISTRIBUTION FUNCTION DURING ION-CYCLOTRON HEATING IN TOKAMAKS [J].
BRAMBILLA, M .
NUCLEAR FUSION, 1994, 34 (08) :1121-1143
[7]   Numerical simulation of ion cyclotron waves in tokamak plasmas [J].
Brambilla, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (01) :1-34
[8]   NUMERICAL-SIMULATION OF ION-CYCLOTRON HEATING OF HOT TOKAMAK PLASMAS [J].
BRAMBILLA, M ;
KRUCKEN, T .
NUCLEAR FUSION, 1988, 28 (10) :1813-1833
[9]   Predictions of improved confinement in SPARC via energetic particle turbulence stabilization [J].
Di Siena, A. ;
Rodriguez-Fernandez, P. ;
Howard, N. T. ;
Navarro, A. Banon ;
Bilato, R. ;
Goerler, T. ;
Poli, E. ;
Merlo, G. ;
Wright, J. ;
Greenwald, M. ;
Jenko, F. .
NUCLEAR FUSION, 2023, 63 (03)
[10]   Variational approach to radiofrequency waves in magnetic fusion devices [J].
Dumont, R. J. .
NUCLEAR FUSION, 2009, 49 (07)