Short-Term Solar Irradiance Forecasting from Future Sky Images Generation

被引:0
作者
Hoang Chuong Nguyen [1 ]
Liu, Miaomiao [1 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I | 2024年 / 14471卷
关键词
Deep learning; Computer Vision; Solar irradiance forecasting;
D O I
10.1007/978-981-99-8388-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solar irradiance prediction is critical for the integration of the solar power to the existing power system. A recent trend in the literature is to adopt deep learning-based methods to predict future solar irradiance from sky images. While these models have achieved significant improvements, they are only capable of making predictions for a fixed forecasting horizon due to their non-recurrent nature. To this end, we propose a deep learning network that is capable of predicting solar irradiance in an autoregressive manner, which allows predictions across a long time horizon. Particularly, we reduce the problem to first generating future sky images which are then used to predict future solar irradiance. We evaluate our models on TSI880 and ASI16 datasets, and show that our model achieves superior performance compared to previous works for 4-h ahead-of-time predictions. Furthermore, we also demonstrate that the solar irradiance forecast of our model is not limited to only 4 h, but can be extended for even longer horizon.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 22 条
[1]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[2]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[3]   Short-term Solar Irradiance Prediction from Sky Images with a Clear Sky Model [J].
Gao, Huiyu ;
Liu, Miaomiao .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :3074-3082
[4]  
HAURWITZ B, 1945, J METEOROL, V2, P154, DOI 10.1175/1520-0469(1945)002<0154:IIRTCA>2.0.CO
[5]  
2
[6]  
HAURWITZ B, 1948, J METEOROL, V5, P110, DOI 10.1175/1520-0469(1948)005<0110:IIRTCT>2.0.CO
[7]  
2
[8]   Solar forecasting methods for renewable energy integration [J].
Inman, Rich H. ;
Pedro, Hugo T. C. ;
Coimbra, Carlos F. M. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (06) :535-576
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]  
Mercier Thomas M., 2023, P IEEE CVF C COMP VI, P2064