Identifying CLL patients at high risk of atrial fibrillation on treatment using machine learning

被引:4
|
作者
Parviz, Mehdi [1 ,2 ]
Agius, Rudi [1 ]
Rotbain, Emelie Curovic [1 ]
Vainer, Noomi [1 ]
Aarup, Kathrine [1 ]
Niemann, Carsten U. [1 ,2 ]
机构
[1] Copenhagen Univ Hosp, Rigshosp, Dept Hematol, Copenhagen, Denmark
[2] Univ Copenhagen, Dept Clin Med, Copenhagen, Denmark
关键词
Chronic lymphocytic leukemia; machine learning; atrial fibrillation; ibrutinib; CHRONIC LYMPHOCYTIC-LEUKEMIA; IBRUTINIB;
D O I
10.1080/10428194.2023.2299737
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
An increased risk of developing atrial fibrillation (AF) has been observed in patients with chronic lymphocytic leukemia (CLL) who were treated with ibrutinib and other BTK inhibitors. Previous studies have explored the prevalence of AF in CLL and the risk of developing AF at time of diagnosis. However, the interaction between treatment type with other risk factors on risk of developing atrial fibrillation at the time of treatment initiation has not been investigated. This becomes particularly crucial in CLL, as there is often a substantial time gap between diagnosis and treatment, unlike many other cancers. We propose a treatment-aware approach using predictive modeling to identify the risk factors associated with AF at time of treatment initiation. Moreover, the model provides treatment-dependent risk factors by including the interaction between the treatment types and other risk factors. The results demonstrated that the treatment-aware modeling including interactions outperformed currentrisk scores.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 50 条
  • [1] Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL)
    Shanafelt, Tait D.
    Parikh, Sameer A.
    Noseworthy, Peter A.
    Goede, Valentin
    Chaffee, Kari G.
    Bahlo, Jasmin
    Call, Timothy G.
    Schwager, Susan M.
    Ding, Wei
    Eichhorst, Barbara
    Fischer, Kirsten
    Leis, Jose F.
    Chanan-Khan, Asher Alban
    Hallek, Michael
    Slager, Susan L.
    Kay, Neil E.
    LEUKEMIA & LYMPHOMA, 2017, 58 (07) : 1630 - 1639
  • [2] Machine learning can identify newly diagnosed patients with CLL at high risk of infection
    Agius, Rudi
    Brieghel, Christian
    Andersen, Michael A.
    Pearson, Alexander T.
    Ledergerber, Bruno
    Cozzi-Lepri, Alessandro
    Louzoun, Yoram
    Andersen, Christen L.
    Bergstedt, Jacob
    von Stemann, Jakob H.
    Jorgensen, Mette
    Tang, Man-Hung Eric
    Fontes, Magnus
    Bahlo, Jasmin
    Herling, Carmen D.
    Hallek, Michael
    Lundgren, Jens
    MacPherson, Cameron Ross
    Larsen, Jan
    Niemann, Carsten U.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL) treated with ibrutinib: risk prediction, management, and clinical outcomes
    Archibald, William J.
    Rabe, Kari G.
    Kabat, Brian F.
    Herrmann, Joerg
    Ding, Wei
    Kay, Neil E.
    Kenderian, Saad S.
    Muchtar, Eli
    Leis, Jose F.
    Wang, Yucai
    Chanan-Khan, Asher A.
    Schwager, Susan M.
    Koehler, Amber B.
    Fonder, Amie L.
    Slager, Susan L.
    Shanafelt, Tait D.
    Call, Timothy G.
    Parikh, Sameer A.
    ANNALS OF HEMATOLOGY, 2021, 100 (01) : 143 - 155
  • [4] Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL) treated with ibrutinib: risk prediction, management, and clinical outcomes
    William J. Archibald
    Kari G. Rabe
    Brian F. Kabat
    Joerg Herrmann
    Wei Ding
    Neil E. Kay
    Saad S. Kenderian
    Eli Muchtar
    Jose F. Leis
    Yucai Wang
    Asher A. Chanan-Khan
    Susan M. Schwager
    Amber B. Koehler
    Amie L. Fonder
    Susan L. Slager
    Tait D. Shanafelt
    Timothy G. Call
    Sameer A. Parikh
    Annals of Hematology, 2021, 100 : 143 - 155
  • [5] Predictors of atrial fibrillation in ibrutinib-treated CLL patients: a prospective study
    Reda, Gianluigi
    Fattizzo, Bruno
    Cassin, Ramona
    Mattiello, Veronica
    Tonella, Tatiana
    Giannarelli, Diana
    Massari, Ferdinando
    Cortelezzi, Agostino
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2018, 11
  • [6] Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study
    Thompson, Philip A.
    Levy, Vincent
    Tam, Constantine S.
    Al Nawakil, Chadi
    Goudot, Francois-Xavier
    Quinquenel, Anne
    Ysebaert, Loic
    Michallet, Anne-Sophie
    Dilhuydy, Marie-Sarah
    Van Den Neste, Eric
    Dupuis, Jehan
    Keating, Michael J.
    Meune, Christophe
    Cymbalista, Florence
    BRITISH JOURNAL OF HAEMATOLOGY, 2016, 175 (03) : 462 - 466
  • [7] Predicting Ischemic Stroke in Patients with Atrial Fibrillation Using Machine Learning
    Jung, Seonwoo
    Song, Min-Keun
    Lee, Eunjoo
    Bae, Sejin
    Kim, Yeon-Yong
    Lee, Doheon
    Lee, Myoung Jin
    Yoo, Sunyong
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (03):
  • [8] Identifying Predictors of ICU Mortality Outcomes Among Critically Ill Patients With Atrial Fibrillation Using Machine Learning Models
    Rajan, Vijval
    Zhang, Yanjia
    Zhang, Zhenwei
    Ahmed, Md Ashfaq
    Roy, Mukesh
    Ramamoorthy, Venkataraghavan
    Rubens, Muni
    Saxena, Anshul
    CIRCULATION, 2023, 148
  • [9] Detection of Atrial Fibrillation Using a Machine Learning Approach
    Liaqat, Sidrah
    Dashtipour, Kia
    Zahid, Adnan
    Assaleh, Khaled
    Arshad, Kamran
    Ramzan, Naeem
    INFORMATION, 2020, 11 (12) : 1 - 15
  • [10] Prediction of Atrial Fibrillation Using Machine Learning: A Review
    Tseng, Andrew S.
    Noseworthy, Peter A.
    FRONTIERS IN PHYSIOLOGY, 2021, 12